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ABSTRACT
Internet-of-Things (Iot) devices are becoming increasingly preva-
lent, with many of them not only relaying data to the Cloud but
also being capable of local computation. This capability could be
used for many purposes: detecting sensor tampering, compression
or anonymization of data before uploading to the cloud, or even
participating in distributed Machine Learning.

IoT devices are not only at risk of malicious and misbehaving
software, but due to their deployment in unprotected locations, they
are also at risk of physical attackers and tampering. Even though
there are many exciting local computation ideas, the authenticity of
computations performed on most IoT devices cannot be guaranteed.
In clouds, Trusted Execution Environments (TEEs) already offer
trust in the computation carried out even in the presence of a phys-
ical attacker, without slowing applications down. In IoT devices,
however, such TEEs introduce large performance overheads and
increase energy consumption.

In this project we propose a radical way forward: to design IoT
platforms with processors that do not rely on off-chip memory and
instead keep application state on on-chip memory that is easier to
protect. This design reduces the overhead of TEEs significantly: it
eliminates the cost of securing off-chip memory from attackers. It
is important to note that, in addition to fresh thinking on how to
design processors with more on-chip memory, computation will
also have to be re-imagined to fit in a reduced memory footprint.
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1 INTRODUCTION
There are a growing number of proposals for local computation on
IoT devices ranging from data anonymization, compression, outlier
detection, to complex distributed algorithms, such as Federated
Learning (FL) [3, 7, 9]. By performing computation locally and
having to communicate less with the Cloud, IoT devices can protect
data privacy, take decisions faster and operate more efficiently.
Especially in the case of FL, pre-training locally and then merging
results in the cloud allows devices to benefit from a centralized
view on the data without sending all private information to the
cloud – this increases privacy guarantees and reduces costly data
movement. The latter aspect is important because IoT devices often
have very reduced network bandwidths.
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Figure 1: Themost efficientway of performingmain-memory
encryption is to avoid it in the first place!

Unfortunately, for virtually all local computation ideas to realize
their promise, there needs to be certainty that the IoT devices per-
form computations correctly and are not sending bogus results /
sensor readings to the cloud. To protect the operating system and
applications that share the same device from each other, practical so-
lutions already exist, e.g., based on ARM TrustZone [5, 10, 11]. The
same applies for detecting compromised devices in some scenarios,
e.g., with MUD [12] that identifies them based on their network
traffic patterns. Even remote attestation of the OS/application code
could be added by using a small TPM [13]. However, when it comes
to protection against attackers who gain physical access to the de-
vice andwho could tamper with off-chip resources, the performance
overhead of protection mechanisms is significant. Powerful server
CPUs offer Trusted Execution Environments (TEEs), e.g., Intel SGX,
with negligible energy or performance overheads. This makes it
easy to deploy applications that benefit from trust guarantees. In
contrast, in power-efficient IoT platforms (e.g. devices similar to a
Raspberry Pi or NXP iMX board), it is relatively costly to perform
encryption/decryption at high bandwidth.

Protecting IoT devices from attackers is a prerequisite for making
them smarter. Securing communication between the IoT device and
the “outside world” is achievable but networking and persistent
storage have orders of magnitude lower bandwidth and higher
latency than DRAM. Related work shows that securing off-chip
memory through encryption can lead to slowdowns of several
orders of magnitude [4, 8]. This leads to an impasse: many of the local
computation ideas require large memories but securing application
state in memory outside the CPU is impractical in most IoT devices.

2 ALWAYS-TRUSTED IOT
IoT devices are arguably in need of the guarantees that modern
TEE technologies provide: they should be secured against physical
attacks, attest that their firmware/software is unchanged and ensure
confidentiality and integrity of sensitive data. Given that IoT devices
are deployed in large numbers, providing these guarantees should
be of high priority – even more so with the emergence of local
computation in the IoT devices and the offloading of many cloud
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functions to the Edge. As outlined in the previous section, these
goals conflict with the requirement that Iot devices remain energy
efficient and cheap.

Our vision is to build future trusted IoT devices that provide TEE
guarantees without significant performance or power overhead. We
propose achieving this by not using off-chip memory and instead
relying on memory that is tightly integrated with the compute element
of the IoT device, making it impractical for attackers to tamper with
its contents. In the absence of off-chip memory, there is no need
for encryption or integrity checks 1 – hence, there is no need to
add power-hungry dedicated silicon to perform these operations!

While our idea might sound as an “extreme design point”, we
are not necessarily saying that future IoT devices should have no
off-chip DRAM. Instead, we advocate for treating on-chip memory
as the default location for all local computation state and designing
applications with this in mind. Off-chip memory could still be used
to increase capacity through paging, but accessing it should be the
exception rather than the rule.

There are existing proposals for using on-chip memory to secure
secrets from attackers. e.g., the work from Colp et al. [2] and Zhang
et al. [15]. The motivation of these works, however, is different
from ours: they aim to either secure secrets that would otherwise
reside as plain text in DRAM or to utilize the on-chip memory as a
cache for encrypted off-chip memory. Our goal is to shift the way
we think about the role of on-chip and off-chip resources of IoT
processors and to design IoT platforms that prioritize the former.

3 OPEN QUESTIONS AND CHALLENGES
With this short paper, we would like to raise interest in the idea of
Always-trusted IoT and initiate collaborations across the computer
architecture, systems, and machine learning communities. These
collaborations are needed because, in addition to adopting a new
way at thinking about the role of on-chip memory in IoT devices,
we need to achieve progress on several fronts:

1) First, we need to design SoCs/processors for IoT devices that
have significantly more on-chip memory than today. This is neces-
sary in order to accommodate a wide range of local computation
ideas. Currently, it is not common to add large amounts of SRAM
to IoT processors, or to include resources like HBM, these being
reserved for HPC-like use-cases. It is also clear that it is not realistic
to increase the memory size of IoT devices drastically – otherwise
it might be cheaper to include crypto accelerator logic on the pro-
cessor. Open questions in this area are, for instance: Among tech-
nologies for adding on-chip memory to small footprint SoCs, which
ones are most energy efficient? What is the break-even point of
energy consumption between performing more compute to secure
off-chip memory versus adding on-chip memory to the device?

2) Second, we need to re-imagine the algorithms underlying
local computation ideas, so that they can happen in a more modest
memory footprint. Many “hot” ideas, such as Federated Learning
(FL), trace their lineage to the cloud server world, where memory is
abundant and wide SIMD units and GPUs can be used to perform
high performance computation. In an IoT setting, however, it is

1Of course, protecting against malicious local computation, securing DMA access,
virtual memory protection, encryption of networking channels and persistent storage,
such as SD cards, can and should be done according to the state of the art methods.

an open questions to what extent can we reduce the memory foot-
print of FL algorithms without significantly impacting their final
model quality. In this context there are already some existing work
one could look at for inspiration, e.g., executing ML operations in
power-constrained devices (e.g., the Raspberry Pi-targeting imple-
mentation of FedML [6]), as well as, exploiting quantization and
reduced precision to fit working sets into small on-chip memories,
for instance, on FPGAs [1, 14] – the setting, however, is new and
off-the-shelf solutions will not work off the bat.

3) Third, it is worth considering what novel local computation
ideas could be implemented in a future in which IoT devices have
TEE guarantees without negative energy of performance impact
thanks to the Always-trusted approach. Once computation on these
devices can be trusted, we should be able to authenticate sensors
and to detect tampering more easily, increasing this way the general
trust in “smart infrastructure” powered by IoT devices.
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