
An Exploratory Study of AttestationMechanisms
for Trusted Execution Environments

Jämes Ménétrey
james.menetrey@unine.ch
University of Neuchâtel

Switzerland

Christian Göttel
christian.goettel@unine.ch
University of Neuchâtel

Switzerland

Marcelo Pasin
marcelo.pasin@unine.ch
University of Neuchâtel

Switzerland

Pascal Felber
pascal.felber@unine.ch
University of Neuchâtel

Switzerland

Valerio Schiavoni
valerio.schiavoni@unine.ch
University of Neuchâtel

Switzerland

Abstract
Attestation is a fundamental building block to establish trust over
software systems.When used in conjunction with trusted execution
environments, it guarantees that genuine code is executed even
when facing strong attackers, paving theway for adoption in several
sensitive application domains. This paper reviews existing remote
attestation principles and compares the functionalities of current
trusted execution environments as Intel SGX, Arm TrustZone and
AMD SEV, as well as emerging RISC-V solutions.

Keywords
TEEs, attestation, Intel SGX, Arm TrustZone, AMD SEV, RISC-V

ACMReference Format:
Jämes Ménétrey, Christian Göttel, Marcelo Pasin, Pascal Felber, and Vale-
rio Schiavoni. 2022. An Exploratory Study of Attestation Mechanisms for
Trusted Execution Environments. In Proceedings of the 5th Workshop on
System Software for Trusted Execution (SysTEX ’22Workshop). 7 pages.

1 Introduction
Confidentiality and integrity are essential building blocks for secure
computer systems, especially if the underlying system cannot be
trusted. For example, video broadcasting software can be tampered
with by end-users who circumvent digital rights management.
Also, virtual machines are candidly open to the indiscretion of their
cloud-based untrusted hosts. The availability of Intel SGX, AMD
SEV, RISC-V, Arm TrustZone-A/M Trusted Execution Environments
(TEEs) into commodity processors significantly helps to build
trusted applications. In a nutshell, TEEs execute software with
stronger security guarantees, including privacy and integrity,
without relying on a trustworthy operating system.

Remote attestation allows trusting a specific piece of software by
verifying its authenticity and integrity. Through remote attestation,
one ensures to be communicating with a specific, trusted (attested)
program remotely. TEEs can support and strengthen the attestation
process, ensuring the software being attested is shielded against
powerful attacks and isolated from the outer system. However,
TEEs are used for attestation using a variety of different techniques.
This survey reviews the current practices regarding remote attesta-
tion mechanisms for TEEs [31], covering a selection of TEEs of the

SysTEX ’22Workshop, @ASPLOS, Lausanne, Switzerland
2022.

four major architectures, namely Intel SGX, Arm TrustZone-A/-M,
AMD SEV and a few emerging implementations for RISC-V.

This paper is organised as follows. In §2, we describe the general
principles of attestation and highlight the differences between
local and remote attestation. In §3 we survey the existing support
for attestation in the TEE implementations currently available in
commodity hardware. We conclude in §4 discussing some future
directions.

2 Attestation
Attestation is an operation through which one software envi-
ronment proves that a specific program is running in specific
hardware. Local attestation is used locally, between two software
environments running in the same hardware, where one trusted
environment proves its identity to another environment, hosted on
the same system. Attestation is based on a local hardware-bound
secret called root of trust, used to generate keys to sign the code
being executed. One can assess whether an attestation is genuine
by verifying that the signature (of a specific processor) matches
the code supposed to be in execution. The result of an attestation
can be used to establish new secrets, i.e., to establish secure
communication channels between both environments.

Remote attestation can establish trust between software environ-
ments running in different hardware. This document adopts the ter-
minology from IETF [6]. A relyingparty wishes to establish a trusted
relationship with an attester, leveraging a verifier. The attester pro-
vides the state of its system, indicating the hardware and the soft-
ware stack that runs on its device by collecting a set of claims. An ex-
ample of a claim is the device’s application code measurement, typ-
ically a cryptographic hash. Claims are collected and cryptograph-
ically signed to form an evidence, later asserted or denied by the
verifier. Once the attester is proven genuine, the relying party can
safely interact with it and, for instance, transfer confidential data.

The problem of remotely attesting software has been extensively
studied, and many implementations already exist based on
software, hardware, or a combination of both. Software-based
remote attestation [40, 11, 43] does not depend on any particular
hardware, and it is adapted to low-cost devices. Hardware-based
remote attestation can rely on tamper-resistant hardware as, for
instance, a Trusted Platform Module (TPM) to ensure that the
claims are trustworthy [46], or a Physical Unclonable Function
(PUF) that prevents impersonations by using unique hardware
marks produced at manufacture [24, 16]. Other approaches exist,

SysTEX ’22Workshop, @ASPLOS, Lausanne, Switzerland JämesMénétrey, Christian Göttel, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni

SEV RISC-VFeatures SGX TrustZone Vanilla SEV-ES SEV-SNP Keystone Sanctum TIMBER-V LIRA-V
Integrity
Freshness
Encryption
Unlimited domains
Open source
Local attestation
Remote attestation
API for attestation
Mutual attestation
User-mode support
Industrial TEE
Isolation and
attestation granularity

Intra-address
space

Secure
world

Virtual
machine

Virtual
machine

Virtual
machine

Secure
world

Intra-address
space

Intra-address
space

Intra-address
space

System support for
isolation Microcode Secure

monitor Firmware Firmware Firmware
Secure
monitor
+ PMP

Secure
monitor
+ PMP

Tagged
memory
+ PMP

PMP

Table 1: Comparison of the state-of-the-art TEEs.

such as exposing a hardware secret fused in a die exclusively to
a trusted environment. Hybrid solutions combine hardware and
software [17, 9, 14, 33], in an attempt to leverage advantages from
both sides. In §3 we describe how TEEs support remote attestation.

Trusted applications may need stronger trust assurances by
ensuring both ends of a secure channel are attested. For example,
when retrieving confidential data from a sensing IoT device
(for sensitive data), the device must authenticate the remote
party, while the latter must ensure the sensing device has not
been spoofed or tampered with. Mutual attestation protocols
have been designed to appraise the trustworthiness of both end
devices involved in a communication. We report in §3 how mutual
attestation has been studied in the context of TEE.

3 Issuing attestations using TEEs
Several solutions exist to implement hardware support for trusted
computing, and TEEs are particularly promising. Typically, a
TEE consists of isolating critical components of the system, e.g.,
portions of the memory, denying access to more privileged but
untrusted systems, such as kernel and machine modes. Depending
on the implementation, it guarantees the confidentiality and the
integrity of the code and data of trusted applications, thanks to
the assistance of CPU security features. This work surveys modern
and prevailing TEEs from processor designers and vendors with
remote attestation capabilities for commodity or server-grade
processors, namely Intel SGX [12], AMD SEV [15], and Arm
TrustZone [34]. Besides, RISC-V, an open ISA with multiple
open source core implementations, ratified the Physical Memory
Protection (PMP) instructions, offering similar capabilities to
memory protection offered by aforementioned technologies [36].
As such, we also included many emerging academic and proprietary
frameworks that capitalise on standard RISC-V primitives, which
are Keystone [27], Sanctum [13], TIMBER-V [45] and LIRA-V [42].
Finally, among the many other technologies in the literature, we
omitted the TEEs lacking remote attestation mechanisms (e.g., IBM
PEF [20]) as well as the TEEs not supported on currently available
CPUs (e.g., Intel TDX [37], Realm [5] from Arm CCA [4]).

3.1 TEE cornerstone features
We propose a series of cornerstone features of TEEs and remote
attestation capabilities and compare many emerging and well-
established state-of-the-art solutions in Table 1. Each feature is
detailed below and can either be missing (), partially () or fully
() available. While we define these features below, we elaborate
further about each TEE in the remainder of the section.

Integrity: an active mechanism preventing DRAM of TEE in-
stances from being tampered with. Freshness: protecting DRAM of
TEE instances against replay and rollback attacks. Encryption: TEE
instances’ DRAM is encrypted for providing some assurance that
no unauthorised access or memory snooping of the enclave occurs.
Unlimited domains: many TEE instances can run concurrently,
while the TEE boundaries (e.g., isolation, integrity) between these
instances are guaranteed by hardware. Partial fulfilment means
that the number of domains is capped. Open source: indicate
whether the solution is either partially or fully publicly available.
Local attestation: a TEE instance can attest to another instance
running on the same system. Remote attestation: a TEE instance
can be attested by remote parties. Partial fulfilment means no
built-in support, but extended by the literature. API for attestation:
an API is available by the trusted applications to interact with the
process of remote attestation. Partial fulfilment means no built-in
support, but extended by the literature. Mutual attestation: the
identity of the attestation and the verifier are authenticated upon
remote attestations. Partial fulfilment means no built-in support,
but extended by the literature. User mode support: state whether
the trusted applications are hosted in user mode, according to the
processor architecture. Industrial TEE: contrast the TEEs used in
production and made by the industry from the research prototypes
designed by the academia. Isolation and attestation granularity: the
level of granularity where the TEE operates for providing isolation
and attestation of the trusted software. System support for isolation:
the hardware mechanisms used to isolate trusted applications.

An Exploratory Study of AttestationMechanisms for Trusted Execution Environments SysTEX ’22Workshop, @ASPLOS, Lausanne, Switzerland

Developer’s premises (safe) Host (unsafe)
Source

files

!

Binary Network
deployment

"

TEE (safe)
"

Compiler

$Code
measurement Verifier

#

Network
attestation

$

$

Figure 1: The workflow of deployment and attestation of TEEs.

3.2 TEEs and remote attestation
The attestation of software and hardware components require
an environment to issue evidences securely. In practice, this role
is usually assigned to some mechanism that cannot be tampered
with. These environments rely on measuring the executed
software (e.g., by hashing its code) and combining that output
with cryptographical values derived from the hardware, such as
a root of trust fused in the die or a physical unclonable function.
We analysed today’s practices for the leading processor vendors
for issuing cryptographically signed evidences.

Figure 1 illustrates the generic workflow for the deployment
of trusted applications. Initially, the application is compiled and
measured on the developers’ premises. It is later transferred to an
untrusted system, executed in the TEE. The trusted application
then communicates with a verifier to establish a trusted channel.
The TEE environment helps this transaction by exposing an
evidence to the trusted application, which adds key material to it,
preventing an attacker from eavesdropping on the communication.
The verifier asserts the evidence comparing it to a list of reference
values to identify genuine instances of trusted applications.

3.3 Intel SGX
Intel Software Guard Extensions (SGX) [12] introduced TEEs for
mass-market processors in its Skylake architecture in 2015. SGX
is a set of instructions to create encrypted regions of memory,
called enclaves, protected in a special execution mode of the
CPU. Figure 2a illustrates the high-level architecture of SGX. A
memory region is reserved at boot time for storing code and data
of encrypted enclaves. This memory area, called the Enclave Page
Cache (EPC), is inaccessible to other programs running on the same
machine, including the operating system and the hypervisor. The
traffic between the CPU and the system memory remains confiden-
tial thanks to the Memory Encryption Engine (MEE). The EPC also
stores verification codes to ensure that the RAM corresponding to
the EPC was not modified by any software external to the enclave.

A trusted application executing in an enclave may establish
a local attestation with another enclave running on the same
hardware. Reports are structures that are created and signed by
the EREPORT instruction. Reports contain identities, attributes (i.e.,
modes and other properties), the trustworthiness of the Trusted
Computing Base (TCB is the amount of hardware and software that
needs to be trusted), additional information for the target enclave
and a Message Authentication Code (MAC). This principle is further
extended by Intel thanks to the usage of the built-in quoting enclave.
A trusted application can hence receive a cryptographically signed
evidence, i.e., a quote, which may be enhanced by additional
information, such as a public key (e.g., used for establishing a

communication channel). The quote binds a genuine Intel SGX
processor with the measurement of the application when loaded
into the enclave. This quote can then be forwarded to a relying
party and be verified remotely using the Intel attestation service [3,
7] or a dedicated public key infrastructure [39]. Intel designed their
remote attestation protocol based on the SIGMA protocol [25] and
extended it to the Enhanced Privacy ID (EPID). While the quoting
enclave is closed-source and the microcode [22] of Intel SGX are not
disclosed, recent work analysed the TEE and its attestation mech-
anism formally [44, 38]. The other components of SGX (i.e., kernel
driver and SDK) are open source. MAGE [10] further extended
the remote attestation scheme of Intel SGX by offering mutual
attestation for a group of enclaves without trusted third parties.

Unlike local attestation, remote attestation requires an
asymmetric-key scheme, which is made possible by the quoting
enclave. The quoting enclave is a special enclave that has access
to the device-specific private key through the EGETKEY instruction.
First, enclaves do a local attestation with the quoting enclave. The
quoting enclave replaces the MAC after verification by a signature
created with the private device key. The EPID scheme does not
identify unique entities, but rather a group of signers. Each signer
belongs to a group, and the verifier checks the group’s public key.
Quotes are signed by the EPID key, which is bound to the firmware
version of the processor [3]. The quoting enclave manages the
EPID key and has exclusive access to it.

In a remote attestation scenario, a service (i.e., verifier) submits
a challenge to the untrusted application with a nonce (Fig.3-➀). To-
gether with the identity of the quoting enclave, the challenge is for-
warded to the application enclave (Fig.3-➁). The application enclave
(i.e., attester) prepares a response to the challenge by creating a man-
ifest (i.e., a set of claims) and a public key (Fig.3-➂), that is used to
send back confidential information to the application enclave. The
manifest hash is used as auxiliary data in the report for the local at-
testation with the quoting enclave. After verifying the report (Fig.3-
➅), the quoting enclave replaces the MAC with the signature from
the EPID key and returns the quote (i.e., evidence) to the application
(Fig.3-➆) which sends it back to the service (Fig.3-➇). The service
verifies the signature of the quote (Fig.3-➈) using either the EPID
public key and revocation information or an attestation verification
service [3]. Finally, the service ensures the integrity of the manifest
by verifying the response to the challenge. Data Center Attesta-
tion Primitives (DCAP) [21] is an alternative solution to EPID that
enables third-party attestation for SGX of server-grade processors.

3.4 ArmTrustZone architectures
Arm TrustZone [34] provides the hardware elements to establish
a single TEE per system. Figure 2b illustrates the high-level
architecture of TrustZone. Broadly adopted by commodity devices
(including mobile devices, IoT edge nodes, etc.), TrustZone splits the
processor into two states: the secure world (TEE) and the normal
world (untrusted environment). A secure monitor instruction (i.e.,
the SMC) is switching between worlds, and each world operates
with their own user and kernel spaces. The trusted world uses a
trusted operating system (such as OP-TEE [29]) and runs Trusted
Applications (TAs) as isolated processes. The normal world uses
a traditional operating system such as Linux.

SysTEX ’22Workshop, @ASPLOS, Lausanne, Switzerland JämesMénétrey, Christian Göttel, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni

Untrusted Trusted

OS

App Call gate Enclave

Hypervisor

Firmware / Microcode

†

(a) Intel SGX

Normal World Secure World

Secure Monitor

Hypervisor

Trusted OS

App
Library

App TA
Library

TA

OS

(b) ArmTrustZone

Untrusted

OS

AppApp

Hypervisor

Firmware / Microcode

Trusted

App

OS

App† †

†

★

(c) AMD SEV

Figure 2: High-level description ofmajor TEE architectures († indicates attested components, b is untrusted for SEV-SNP).

ApplicationEnclave

M
e
m

o
ry

QE ID

REPORT

MEE
Service

validate

QUOTE

encrypt/
decrypt

2

REPORT

3 4

5

E
P

C

Quoting enclave

EPID

Challenge

QUOTE

1

6

7

Manifest

EREPORT

Manifest

EGETKEY

8

9

App

ephemeral
key

device-
specific
key

Intel
Attestation
Service

QUOTE

Verification
Figure 3: The remote attestation flow of Intel SGX.

Despite the commercial success of TrustZone, it lacks attestation
mechanisms, preventing relying parties from validating and trust-
ing the state of a TrustZone TEE remotely. Many protocols have
been proposed for Arm TrustZone one-way remote attestation [47,
28], as well as for mutual remote attestation [1, 41], extending the
capabilities of built-in hardware. These protocols require the avail-
ability of extra hardware with a root of trust in the secure world,
a secure source of randomness for cryptographic operations, and a
secure boot mechanism. Indeed, devices lacking built-in attestation
mechanisms may rely on a secret fused in the die as a root of trust
to derive private cryptographic materials (e.g., a private key for
evidence issuance). Secure boot can measure the integrity of indi-
vidual boot stages on devices and prevent tampered systems from
being booted. As a result, remote parties can verify issued evidences
in the TEE and ensure the trustworthiness of the attesters.

In the following, we describe the remote attestation mechanism
of Shepherd et al. [41] as a study case. This solution establishes
mutually trusted channels for bi-directional attestation, based on
a Trusted Measurer (TM), which is a software component located
in the trusted world and authenticated by the TEE’s secure boot,
to generate evidences based on the OS and TA states (i.e., a set
of claims). A private key is provisioned and sealed in the TEE’s
secure storage and used by the TM to sign evidences, similarly to
a firmware TPM [35].

Using a dedicated protocol for remote attestation, the bi-
directional attestation is accomplished in three rounds. First, the
attester sends a handshake request to the verifier containing
the identity of both parties and the cryptographic materials to
initiate a key establishment. Second, the verifier answers to the
handshake by including similar information (i.e., both identifies
and cryptographic materials), as well as a signed evidence of the
verifier’s TEE, based on the computed common secret (i.e., using
Diffie-Hellman). Finally, the attester sends back a signed evidence

LAUNCH_SECRET

Hypervisor

VM

Shared
memory

V
M

C
B

G
H

C
B

VM

Shared
memory

V
M

C
B

G
H

C
B

M
e

m
o

ry

Firmware

Memory
Controler

ASID

Guest
owner

LAUNCH_UPDATE_DATA
LAUNCH_UPDATE_VMSA

LAUNCH_MEASURE

LAUNCH_START

LAUNCH_FINISHED
load key

encrypt/
decrypt

3

4

5

1

2 4

4

Figure 4: The remote attestation flow of AMD SEV.

of the attester’s TEE, based on the same common secret. Once
both parties assert that the evidences are genuine, they can derive
common secrets to establish a trusted channel of communication.

3.5 AMD SEV
AMD Secure Encrypted Virtualization (SEV) [15] allows isolating
virtualised environments (e.g., containers and virtual machines)
from trusted hypervisors. Figure 2c illustrates the high-level
architecture of SEV. SEV uses an embedded hardware AES engine,
which seamlessly relies on multiple keys to encrypt memory. It
exploits a closed Arm Cortex-v5 processor as a secure co-processor,
used to generate cryptographic materials kept in the CPU. Each
virtual machine and hypervisor is assigned a particular key
and tagged with an Address Space Identifier (ASID), preventing
cross-TEE attacks. The tag restricts the code and data usage to the
owner with the same ASID and protects from any unauthorised
usage inside the processor. Code and data are protected by AES
encryption with a 128-bit key based on the tag outside the processor
package. SEV-ES (SEV Encrypted State) [23] is a successor to SEV
where register states are encrypted, and the guest operating system
needs to grant the hypervisor access to specific guest registers,
fixing an error in SEV that could leak sensitive information during
interrupts from guests to the hypervisor through registers [19].

Register states are stored with SEV-ES for each virtual machine
in a Virtual Machine Control Block (VMCB) that is divided into an
unencrypted control area and an encrypted Virtual Machine Save
Area (VMSA). The hypervisor manages the control area to indicate
event and interrupt handling, while VMSA contains register states.

An Exploratory Study of AttestationMechanisms for Trusted Execution Environments SysTEX ’22Workshop, @ASPLOS, Lausanne, Switzerland

Integrity protection ensures that encrypted register values in the
VMSA cannot be modified without being noticed and that virtual
machines resume with the same state. Requesting services from the
hypervisor due to interrupts in virtual machines are communicated
over the Guest Hypervisor Communication Block (GHCB) that is
accessible through shared memory. Hypervisors do not need to be
trusted with SEV-ES because they no longer have access to guest
registers. SEV Secure Nested Paging (SNP) [2] were proposed to pre-
vent rollback attacks [8] allowing a malicious cloud provider with
physical access to SEVmachines to easily install malicious firmware
and be able to read in clear the (otherwise protected) system.

At its core, SEV leverages a Chip Endorsement Key (CEK), a
secret fused in the die of the processor and issued by AMD for
its attestation mechanism. The three editions of SEV may start
the virtual machines from an unencrypted state, similarly to SGX
enclaves. In such cases, the secrets and confidential data must then
be provisioned using remote attestations queries. The AMD secure
processor cryptographically measures the content of the virtual
machine into a launch digest (i.e., claim). In addition, AMD-SNP
measures the metadata associated with memory pages, ensuring
the digest also considers the layout of the initial guest memory.
While SEV and SEV-ES only support remote attestation during the
launch of the guest operating system, SEV-SNP supports a more
flexible model. That latter bootstraps private communication keys,
enabling the guest virtual machine to request attestation reports
(i.e., evidence) at any time and obtain cryptographic materials for
data sealing, i.e., storing data securely at rest.

SEV uses six launch commands for hypervisors to prepare
encrypted memory before enabling SEV for virtual machines. The
LAUNCH_START command (Fig.4-➊) creates a guest context in the
firmware with the public key of the guest owner provided by
the hypervisor. As the hypervisor is loading the virtual machine
into memory, LAUNCH_UPDATE_DATA commands (Fig.4-➋) are
called to encrypt the memory and calculate measurements. The
hypervisor initialises the VMSA inside the VMCB with the
LAUNCH_UPDATE_VMSA command, which is only available if SEV-ES
is enabled. When the virtual machine is loaded, and the VMSA
is initialised, the hypervisor calls the LAUNCH_MEASURE command
(Fig.4-➌), which produces a measurement of the encrypted virtual
machine. The SEV firmware provides guest owners with the
measurement containing a signature of the state of their virtual
machine to prove that it is in the expected state. The guest owner
verifies that the virtual machine launched correctly and has not
been interfered with before provisioning any sensitive data to the
virtual machine. Sensitive data, such as image decryption keys,
is provisioned through the LAUNCH_SECRET command (Fig.4-➍)
after which the hypervisor calls the LAUNCH_FINISHED command
(Fig.4-➎) to indicate that the virtual machine can be executed.

Software development is eased, as AMD SEV protects the whole
virtual machine, which comprises the operating system, compared
to the SGX paradigm where the applications must be split in an
untrusted and trusted part. Nonetheless, this approach increases
the attack surface of the secure environment since the TCB is
enlarged. The guest operating system must also support SEV,
cannot access host devices (PCI passthrough), and the first edition
of SEV (called vanilla in Table 1) is limited to 16 virtual machines.

3.6 RISC-V architectures

Several TEE designs were proposed for RISC-V based on its physical
memory protection (PMP) instructions, some even including
support for remote attestation. In the following, we describe the
designs we deemed more important for the scope of our study.

Keystone [27] is a modular framework that provides the building
blocks to create trusted execution environments. Keystone imple-
ments a securemonitor atmachinemode (M-mode) and relies on the
RISC-V PMP instructions, without requiring any hardware change.
Users can select their own set of security primitives, e.g., memory
encryption, dynamic memory management and cache partition-
ing. Each trusted application executes in user mode (U-mode) and
embeds a runtime that executes in supervisor mode (S-mode). The
runtime decouples the infrastructure aspect of the TEE (e.g., mem-
ory management, scheduling) from the security aspect handled by
the secure monitor. Keystone utilises a secure boot mechanism that
measures the secure monitor image, generates an attestation key
and sign them using a hardware-visible secret (i.e., root of trust).
The secure monitor exposes a Supervisor System Interface (SBI) for
the enclaves to communicate. A subset of the SBI is dedicated to
issue evidences signed by provisioned keys (i.e., endorsed by the
verifier), based on the measurement of the secure monitor, the run-
time and the enclave’s application. Arbitrary data can be attached to
the evidence, enabling an attester to create a secure communication
channel with a verifier using standard protocols. When a remote at-
testation request occurs, the remote party (i.e., verifier) sends a chal-
lenge to the trusted application. The response contains the evidence
with the public session key of the attester. Finally, the evidence is
verified based on the public signature and themeasurements of com-
ponents (i.e., claims). While Keystone does not describe in-depth
the protocol, the authors provide a case study of remote attestation.

Sanctum [13] has been the first proposition with support for
attesting trusted applications. It offers similar promises to Intel’s
SGX by providing provable and robust software isolation, running
in enclaves. The authors replaced Intel’s opaque microcode with
two open-source components: the measurement root (mroot) and
a secure monitor as a means to provide verifiable protection.
A remote attestation protocol is proposed with a design for
deriving trust from a root of trust. Upon booting the system, mroot
generates the necessary keys and hands off to the secure monitor.
Similarly to SGX, Sanctum owns a dedicated signing enclave, that
receives a derived private key from the secure monitor to generate
evidences. The remote attestation protocol requires the attester
to establish a session key with the verifier. Afterwards, a regular
enclave can request an evidence to the signing enclave based on
multiple claims, such as the hash of the code of the requesting
enclave and some information coming from the key exchange
messages. This evidence is then forwarded to the verifier by the
secure channel previously established for examination. This work
has been further extended to establish a secure boot mechanism
and an alternative method for remote attestation by deriving a
cryptographic identity from manufacturing variation using a PUF,
which is useful when a root of trust is not present [26].

TIMBER-V [45] achieved the isolation of execution on small
embedded processors thanks to hardware-assisted memory tagging.
Tagged memory transparently associates blocks of memory with

SysTEX ’22Workshop, @ASPLOS, Lausanne, Switzerland JämesMénétrey, Christian Göttel, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni

additional metadata. Unlike Sanctum, they aim to bring enclaves
to smaller RISC-V with limited physical memory. Similarly to
TrustZone, user and supervisor modes are split into secure and
normal worlds. The secure supervisor mode runs a trust manager,
called TagRoot, which manages the tagging of the memory. The
secure user mode improves the model of TrustZone, as it can handle
multiple isolated enclaves. They combine tagged memory with an
MPU to support an arbitrary number of processes. The trust man-
ager exposes an API for the enclaves to retrieve an evidence, based
on a given enclave identity, a secret platform key (i.e., root of trust),
and an arbitrary identifier provided by the trusted application.
The remote attestation protocol is twofold: the remote party (i.e.,
verifier) sends a challenge to the trusted application (i.e., attester).
Next, the challenge is forwarded to the trust manager as an identi-
fier to issue an evidence, which is authenticated using a MAC. The
usage of symmetric cryptography is unusual in remote attestation
because the verifier requires to own the secret key to verify the
evidence. The authors added that TIMBER-V could be extended
to leverage public key cryptography for remote attestation.

LIRA-V [42] drafted a mutual remote attestation for constrained
edge devices. While this solution does not enable arbitrary
code execution in a TEE, it introduces a comprehensive remote
attestation mechanism. The proposed protocol relies exclusively
on machine mode (M-mode) or machine and user mode (M-mode
and U-mode). Claims are computed on parts of the device physical
memory regions by a program stored in the ROM. LIRA-V’s mutual
attestation is similar to the protocol illustrated in TrustZone-A, and
requires provisioned keys as a root of trust. The first device (i.e., ver-
ifier) sends a challenge with a public session key. Next, the second
device (i.e., attester) answers with a challenge and public session
key, as well as an evidence bound to that device and encrypted
using the established shared session key. Finally, if the first device
asserts the evidence, it becomes the attester and issues an evidence
to be sent to the second device, which becomes the verifier.

We omitted some other emerging TEEs leveraging RISC-V as
they lack a remote attestation mechanism. For instance, SiFive,
a provider of commercial RISC-V processors, proposes Hex-Five
MultiZone [18], a zero-trust computing architecture enabling
the isolation of software, called zones. The multi zones kernel
ensures the sane state of the system using secure boot and PMP
and runs unmodified applications by trapping and emulating
functionality for privileged instructions. HECTOR-V [32] is a
design for developing hardened TEEs with a reduced TCB. Thanks
to a tight coupling of the TEE and the SoC, the authors provide
runtime and peripherals services directly from the hardware and
leverage a dedicated processor and a hardware-based security
monitor, which ensure the isolation and the control-flow integrity
of the trusted applications, called trustlets. Finally, Lindemer et
al. [30] enable simultaneous thread isolation and TEE separation
on devices with a flat address space (i.e., without an MMU), thanks
to a minor change in the PMP specification.

4 Conclusion
This work compares state-of-the-art remote attestation schemes,
which leverage hardware-assisted TEEs, helpful for deploying
and running trusted applications from commodity devices to

cloud providers. TEE-based remote attestation has not yet been
extensively studied and seems to remain an industrial challenge.

Our survey highlights four architectural extensions: Intel SGX,
Arm TrustZone, AMD SEV, and upcoming RISC-V TEEs. While
SGX competes with SEV, the two pursue significantly different
approaches. The former provides a complete built-in remote
attestation protocol for multiple, independent, trusted applications.
The latter is designed for virtualized environments, shielding
VMs from untrusted hypervisors, and provides instructions
to help the attestation of independent VMs. Arm TrustZone
and native RISC-V do not provide means for attesting software
running in the trusted environment, relying on the community
to develop software-based alternatives. However, TrustZone-M
supports a root of trust, helping to develop an adequately trusted
implementation in software. RISC-V extensions differ a lot, offering
different combinations of software and hardware extensions, some
of which support a root of trust and multiple trusted applications.

Whether provided by manufacturers or developed by third par-
ties, remote attestation remains an essential part of the design of
trusted computing solutions. They are the foundation of trust for
remote computing where the target environments are not fully
trusted. Current solutions widely differ in terms of maturity and
security. Whereas some TEEs are developed by leading processor
companies and provide built-in attestation mechanisms, others still
lack proper hardware attestation support and require software solu-
tions instead. Our study sheds some light on the limitations of state-
of-the-art TEEs and identifies promising directions for future work.

Acknowledgments
This publication incorporates results from the VEDLIoT project,
which received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No
957197.

References
[1] JaehwanAhn, Il-Gu Lee, andMyungchul Kim. 2020. Design and implementation

of hardware-based remote attestation for a secure internet of things.Wireless
personal communications.

[2] AMD. 2020. Strengthening VM isolation with integrity protection and more.
White paper.

[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy (HASP ’13). Citeseer.

[4] Arm. 2021. Confidential compute-architecture (CCA). https://bit.ly/3v1fhGQ.
[5] Arm. 2021. The realmmanagement extension (RME), for Armv9-A. Technical

report. (June 23, 2021).
[6] Henk Birkholz, Dave Thaler, Michael Richardson, Ned Smith, and Wei Pan.

2021. Remote attestation procedures architecture. Technical report. Internet
Engineering Task Force, (April 2021).

[7] Ernie Brickell and Jiangtao Li. 2007. Enhanced privacy ID: a direct anonymous
attestation scheme with enhanced revocation capabilities. In Proceedings of the
2007 ACMworkshop on privacy in electronic society (WPES ’07).

[8] Robert Buhren, ChristianWerling, and Jean-Pierre Seifert. 2019. Insecure until
proven updated: analyzing AMD SEV’s remote attestation. In Proceedings of the
2019 ACM SIGSAC conference on computer and communications security (CCS
’19).

[9] Xavier Carpent, Norrathep Rattanavipanon, and Gene Tsudik. 2018. Remote
attestation of IoT devices via SMARM: shuffledmeasurements against roving
malware. In 2018 IEEE international symposium on hardware oriented security
and trust (HOST ’18). IEEE.

[10] Guoxing Chen and Yinqian Zhang. 2020. Mage: mutual attestation for a group
of enclaves without trusted third parties.Arxiv preprint arxiv:2008.09501.

[11] Young-Geun Choi, Jeonil Kang, and DaeHun Nyang. 2007. Proactive code veri-
fication protocol in wireless sensor network. In Computational science and its

https://bit.ly/3v1fhGQ

An Exploratory Study of AttestationMechanisms for Trusted Execution Environments SysTEX ’22Workshop, @ASPLOS, Lausanne, Switzerland

applications (ICCSA ’07). Osvaldo Gervasi and Marina L. Gavrilova, editors.
[12] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology

ePrint Archive. (2016).
[13] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: minimal

hardware extensions for strong software isolation. In 25th USENIX security
symposium (USENIX Security 16). (August 2016).

[14] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rattanavipanon,
and Gene Tsudik. 2021. On the TOCTOU problem in remote attestation. In
Proceedings of the 2021 ACMSIGSAC conference on computer and communications
security (CCS ’21).

[15] Advanced Micro Devices. 2019. Secure Encrypted Virtualization API: technical
preview. Technical report. Advanced Micro Devices, (July 2019).

[16] Wei Feng, Yu Qin, Shijun Zhao, and Dengguo Feng. 2018. Aaot: lightweight
attestation and authentication of low-resource things in IoT and CPS. Computer
networks.

[17] Aurélien Francillon,QuanNguyen, Kasper B. Rasmussen, andGeneTsudik. 2014.
A minimalist approach to remote attestation. In 2014 design, automation test in
europe conference exhibition (DATE ’14).

[18] Cesare Garlati and Sandro Pinto. 2020. A clean slate approach to Linux security
RISC-V enclaves. In Proceedings of the embedded world conference, nuremberg,
germany (EW ’20).

[19] Felicitas Hetzelt and Robert Buhren. 2017. Security Analysis of Encrypted Vir-
tual Machines. In Proceedings of the 13th ACM SIGPLAN/SIGOPS international
conference on virtual execution environments (VEE ’17).

[20] Guerney D. H. Hunt, Ramachandra Pai, Michael V. Le, Hani Jamjoom, Sukadev
Bhattiprolu, Rick Boivie, Laurent Dufour, Brad Frey, Mohit Kapur, Kenneth A.
Goldman, Ryan Grimm, Janani Janakirman, JohnM. Ludden, Paul Mackerras,
CathyMay, Elaine R. Palmer, Bharata Bhasker Rao, Lawrence Roy, William A.
Starke, Jeff Stuecheli, Enriquillo Valdez, andWendel Voigt. 2021. Confidential
computing for OpenPOWER. In Proceedings of the 16th european conference on
computer systems (EuroSys ’21).

[21] Intel. 2018. Intel SGX data center attestation primitives (DCAP). Product brief.
(2018).

[22] Intel. 2021. XuCode. https://intel.ly/3rYAhMI.
[23] David Kaplan. 2017. Protecting VM register state with SEV-ES. Technical report.

(February 2017).
[24] Joonho Kong, Farinaz Koushanfar, Praveen K. Pendyala, Ahmad-Reza Sadeghi,

and ChristianWachsmann. 2014. PUFatt: embedded platform attestation based
on novel processor-based PUFs. In 2014 51st ACM/EDAC/IEEE design automation
conference (DAC ’14).

[25] Hugo Krawczyk. 2003. SIGMA: the ‘SIGn-and-MAc’ approach to authenticated
Diffie-Hellman and its use in the IKE protocols. In Advances in cryptology
(CRYPTO ’03). Dan Boneh, editor.

[26] Ilia Lebedev, Kyle Hogan, and Srinivas Devadas. 2018. Invited paper: secure boot
and remote attestation in the sanctum processor. In 2018 IEEE 31st computer
security foundations symposium (CSF ’18).

[27] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: an open framework for architecting trusted execution
environments. In Proceedings of the 15th european conference on computer systems
(EuroSys ’20).

[28] Wenhao Li, Haibo Li, Haibo Chen, and Yubin Xia. 2015. Adattester: secure online
mobile advertisement attestation using trustzone. In Proceedings of the 13th
annual international conference on mobile systems, applications, and services
(MobiSys ’15).

[29] Linaro. 2021. OP-TEE. https://www.op-tee.org.
[30] Samuel Lindemer, Gustav Midéus, and Shahid Raza. 2020. Real-time thread

isolation and trusted execution on embedded RISC-V. In First international
workshop on secure RISC-V architecture design exploration (SECRISC-V ’20).

[31] PieterMaene, JohannesGötzfried, RuandeClercq,TiloMüller, Felix Freiling, and
Ingrid Verbauwhede. 2018. Hardware-Based Trusted Computing Architectures
for Isolation and Attestation. IEEE transactions on computers.

[32] Pascal Nasahl, Robert Schilling, Mario Werner, and Stefan Mangard. 2021.
HECTOR-V: a heterogeneous CPU architecture for a secure RISC-V execution
environment. In Proceedings of the 2021 ACM asia conference on computer and
communications security (ASIA CCS ’21).

[33] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. 2019. VRASED: a verified hardware/software co-
design for remote attestation. In 28th USENIX security symposium (USENIX
Security 19). (August 2019).

[34] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: a compre-
hensive survey.ACM computing surveys (CSUR).

[35] Himanshu Raj, Stefan Saroiu, AlecWolman, Ronald Aigner, Jeremiah Cox, Paul
England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,
MagnusNystrom, David Robinson, Rob Spiger, Stefan Thom, andDavidWooten.
2016. fTPM: a Software-Only implementation of a TPM chip. In 25th USENIX
security symposium (USENIX Security 16). (August 2016).

[36] 2019. RISC-V ISA and privileged architecture specs. https://bit.ly/3LN9Ili.

[37] Muhammad Usama Sardar, Saidgani Musaev, and Christof Fetzer. 2021. Demys-
tifying attestation in Intel trust domain extensions via formal verification. IEEE
access.

[38] Muhammad Usama Sardar, Do Le Quoc, and Christof Fetzer. 2020. Towards
formalization of enhanced privacy id (EPID)-based remote attestation in Intel
SGX. In 2020 23rd euromicro conference on digital system design (DSD ’20).

[39] Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski. 2018.
Supporting third party attestation for Intel SGXwith Intel data center attestation
primitives.White paper.

[40] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert Van Doorn, and
PradeepKhosla. 2005. Pioneer: verifying integrity andguaranteeing executionof
code on legacy platforms. In Proceedings of acm symposium on operating systems
principles (SOSP ’05).

[41] Carlton Shepherd, Raja Naeem Akram, and Konstantinos Markantonakis. 2017.
Establishing mutually trusted channels for remote sensing devices with trusted
execution environments. In Proceedings of the 12th international conference on
availability, reliability and security (ARES ’17).

[42] Carlton Shepherd, Konstantinos Markantonakis, and Georges-Axel Jaloyan.
2021. LIRA-V: lightweight remote attestation for constrained RISC-V devices. In
2021 IEEE security and privacy workshops (SPW ’21).

[43] Rodrigo Vieira Steiner and Emil Lupu. 2019. Towards more practical software-
based attestation. Computer networks.

[44] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit A.
Seshia. 2017. A formal foundation for secure remote execution of enclaves. In
Proceedings of the 2017 ACMSIGSAC conference on computer and communications
security (CCS ’17).

[45] SamuelWeiser, MarioWerner, Ferdinand Brasser, Maja Malenko, Stefan Man-
gard, andAhmad-Reza Sadeghi. 2019. TIMBER-V: tag-isolatedmemory bringing
fine-grained enclaves to RISC-V. In NDSS (NDSS ’19).

[46] Wenjuan Xu, Xinwen Zhang, Hongxin Hu, Gail-Joon Ahn, and Jean-Pierre
Seifert. 2012. Remote attestation with domain-based integrity model and policy
analysis. IEEE TDSC.

[47] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. 2019.
SecTEE: a software-based approach to secure enclave architecture using TEE. In
Proceedings of the 2019 ACMSIGSAC conference on computer and communications
security (CCS ’19).

https://intel.ly/3rYAhMI
https://www.op-tee.org
https://bit.ly/3LN9Ili

	Abstract
	1 Introduction
	2 Attestation
	3 Issuing attestations using TEEs
	3.1 TEE cornerstone features
	3.2 TEEs and remote attestation
	3.3 Intel SGX
	3.4 Arm TrustZone architectures
	3.5 AMD SEV
	3.6 RISC-V architectures

	4 Conclusion

