
Attestable Software Versioning for Stateful Confidential
Computing

Charly Castes
EPFL, Switzerland

Edouard Bugnion
EPFL, Switzerland

ABSTRACT
Trusted execution environments enable the creation of confiden-
tial and attestable enclaves that exclude the platform and service
providers from the trusted base. From its initial attestable state, a
stateful enclave such as a confidential database can hold confiden-
tial information in memory or use an enclave-specific secret seed
to encrypt it on disk. The attestation logic is bound to a unique
software version, and does not provide a mechanism to upgrade
software version.

We propose attestable software versioning to ensure the trust-
worthy software migration of stateful enclaves in the context of an
untrusted service operator. Attestable software versioning relies
on extended attestation, a two-steps hashing process for measure-
ment validation of an enclave extended with its complete software
lineage, which further restricts migration to white-listed software
versions. Enclaves rely on mutual local or remote extended attes-
tation during the software upgrade; client program use remote
extended attestation to determine the software lineage decisions
made by the untrusted service operator. The mechanism enables a
full separation of roles and responsibilities between software edi-
tors ,which cannot access data, and untrusted platform operators,
who trigger attestable software upgrades.
ACM Reference Format:
Charly Castes and Edouard Bugnion. 2022. Attestable Software Versioning
for Stateful Confidential Computing. In Proceedings of Proceedings of the 5th
Workshop on System Software for Trusted Execution (SysTEX ’22 Workshop).
ACM, New York, NY, USA, 3 pages.

1 INTRODUCTION
Trusted Execution Environments (TEE) such as Intel SGX [8], AMD
SEV-SNP [16], AMDTrustZone [13] or Keystone [10] enable the cre-
ation of isolated software environments that are protected from the
outside world, including all system software such as a hypervisors,
operating systems, and utilities available to system administrators.

The integrity of initial code and data is guaranteed inside a TEE,
as well as the confidentiality of any subsequently produced or in-
jected state. An attestation mechanism [1] enables clients to identify
a TEE by its initial state and verify that it runs on top of a trusted
hardware. After attestation, if the TEE is deemed trustworthy, the
client can send sensitive data over a secure channel [9] without the
need to trust the platform or service provider operators.

A TEE is identified by its measurement [1], a hash over its initial
code and data, that can be linked to human-readable source code us-
ing a reproducible build system. The measurement alone is enough
information for trusting stateless applications or applications that
manage only soft state in memory. The mechanism is however
insufficient to handle software upgrades as the state of the service

SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland
2022.

must, in the general case, be securely transferred from one version
of the software to another. This has the unfortunate consequence
of preventing the transparent software upgrade of stateful services
such as confidential databases [3, 5, 12, 14] when the service op-
erator cannot be trusted. Indeed, the traditional software upgrade
approach based on state externalization could be trivially abused
by a malicious operator to either leak data or inject corrupt data
into the restarted enclave.

Some stateful confidential services work around the problem
by having the client program drive data migration whenever the
confidential service software must be upgraded. As an example,
the Signal messaging application’s secure value recovery service
purposefully requires all the clients to migrate their own keys to a
new enclave to complete a software upgrade [12].

We propose attestable software versioning to ensure the trustwor-
thy software migration of stateful enclaves. By separating the roles
and responsibilities of the software editor, which publishes repro-
duceable builds and never has access to data, and of the untrusted
service operator responsible for the ongoing operation of the ser-
vice including the initiation of software upgrades, we provide end
users transparency guarantees on the lineage of software through
remote attestation.

2 DESIGN
Enabling software update for stateful confidential services operated
by an untrusted service operator poses issues regarding:

(1) The provenance of internal state. The service operator
must be constrained to import only authorized state into
the service. In addition, the provenance of data should be
attestable so that the end user can decide whether or not it
deems the service trustworthy.

(2) The migration of internal state. The service operator
must be constrained to migrate the service’s state only to au-
thorized versions. In particular, the end user must be aware
of all data migration and, depending on the security require-
ments and trust level of the operator, be able to prevent
migration to a particular version.

We propose to solve both issues by extending attestation with the
history of software versions and controlling data migration using a
trusted white list of authorized versions.

Figure 1 describes the workflow for attestable software version-
ing. A software editor publishes verifiable source code and the cor-
responding artifacts obtained through a reproducible build system.

The untrusted operator plays an active role in the data migration,
which consists of the following steps: (1) the operator selects a
subset of versions and commits their measurements to a white list
operated by an external trusted party. (2) the operator then launches
a new enclave ("V5" in Figure 1) with as initial state the new enclave
extended with the current version history. (3) The new enclave



SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland Charly Castes and Edouard Bugnion

Reproducible
Build 

Commit
Measurement

V5 - New Version
H5 = [M1, M3, M4, M5] 

V4 - Old Version 
H4 = [M1, M3, M4] 

Append History & Deploy

Extended
Attestation 

Data Migration

Authorized Versions

Extended
Attestation 

Software
Editor 

End User

Operator

Artifacts

[V1, V2, V3, V4, V5]

Trusted White List

[M1, M3, M4, M5]

Figure 1: Attestable Software Versioning

establishes a secure, attested channel with the old enclave. Through
extended attestation, each enclave can validate the integrity of
software published on the white list and their respective lineages.
The new lineage must extend the current lineage. (4) Migration
begins at the successful completion of the previous step. (5) The
new enclave takes over the service.

The end user queries the lineage of an enclave through extended
attestation whenever it establishes a connection with the service.

2.1 Threat Model
We follow the threat model of other work in confidential com-
puting [2, 4, 7, 11] in which an adversary with full administrative
privileges tries to access confidential data or to damage the enclave’s
integrity. Specifically, the operator may be the attacker.

The software editor publishes source code and corresponding
artifacts obtained through a reproducible build system. We trust
that the published software does not contain directly-exploitable
bugs or backdoor. Any breach of trust, including collusion with the
service operator, would be evident in the published artifacts.

Through remote attestation, end users receive a proof of the full
history of software migrations, and can use that information before
sharing any new data with the service.

Denial-of-service attacks, a known limitation of most TEEs in-
cluding SGX [8], and hardware side channels [6] are out of scope.
We assume a correct underlying implementation of the hardware
that provides confidentiality, integrity, and attestation.

2.2 Extended Attestation Mechanism
The attestation is extended by incorporating the history in the
measurement, this is done by appending history pages to the initial
state of the application. The measurement therefore corresponds
to the hash over the enclave’s code and data plus the history pages.
During attestation the enclave sends its history to the client.

The history is validated using a two steps hashing process. First,
the service operator initializes a hash at build time and updates it
with the code and data of the application (excluding the history),
but does not finalize it yet: instead, it saves the hash’s internal
state and includes it within the history pages. Second, at attestation
time, the client initializes a new hash with the values previously
computed. At that point the client can: (1) finalize the hash to get the
measurement of the enclave if there were no history added, we call it
the code measurement, and (2) extend the hash with the history and
finalize it to get the actual measurement (including history pages).
If the computed measurement matches the measurement from the

standard attestation process, the client has successfully learned
the code measurement and verified the authenticity of the history
(it’s the same as the one burnt in the enclave pages). Note that
the two steps hashing process is secure assuming second-preimage
resistance [15] of the underlying hash function.

The extended attestation is a mechanism to attest that a given
blob of data is written on the last few memory pages of an enclave,
but do not enforce any semantic for that data. For the history to be
meaningful the enclaves must take the appropriate actions.

2.3 Data Migration Policy
We define the history of an enclave as an ordered list of code mea-
surements: 𝐻 = [𝑀1, ..., 𝑀𝑁 ]. We say that 𝐻A is included in 𝐻B if
each measurement in𝐻A is also present in𝐻B, and the relative order
of measurements in 𝐻A is preserved in 𝐻B.

To solve the problem of attestable provenance of the system’s
state, a version A accepts to migrate its data to a version B if and
only if the history of enclave A, 𝐻A, is included in the history of
enclave B, 𝐻B. This policy enforces that the internal state of an
application can only be derived from the internal states of previous
versions, according to the application’s history.

This policy alone does not prevent the service operator from
migrating the data to a flawed version with the appropriate history.
Therefore, we introduce an ordered white list of authorized versions
𝑊𝐿 . The refined policy is the following: enclave A accepts to migrate
its data to an enclave B if and only if 𝐻A ⊂ 𝐻B and 𝐻B ⊂𝑊𝐿 .

The white list must be trusted by the end user. It should be or-
ganized as a tamper-proof chain of immutable content, e.g., a log
operated by a trusted third party or built on top of a distributed
ledger. The service operator must commit a version’s code mea-
surement to the chain before being able to migrate data. The end
user can either decide to manually approve versions or rely on the
service operator’s accountability through its public commitments.

3 CURRENTWORK
We are building a prototype that implements all aspects of attestable
software versioning as described in §2, including a toolchain to
launch enclaves with an extended initial state, the library that runs
within each enclaves to implement mutual extended attestation,
a client library, and an optional data migration mechanisms that
encrypts secondary storage across attestable software upgrades.

Our prototype targets existing SGX-enabled hardware, even
though the design can be applied to other TEEs, and requires no
system software modifications.



Attestable Software Versioning for Stateful Confidential Computing SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland

REFERENCES
[1] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. Citeseer, 7.

[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark Still-
well, David Goltzsche, David M. Eyers, Rüdiger Kapitza, Peter R. Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX.. In OSDI.
689–703.

[3] Sumeet Bajaj and Radu Sion. 2014. TrustedDB: A Trusted Hardware-Based
Database with Privacy and Data Confidentiality. IEEE Trans. Knowl. Data Eng.
26, 3 (2014), 752–765.

[4] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. 2015. Shielding Appli-
cations from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst. 33, 3
(2015), 8:1–8:26.

[5] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz,
Christof Fetzer, Peter R. Pietzuch, and Rüdiger Kapitza. 2016. SecureKeeper:
Confidential ZooKeeper using Intel SGX.. In MIDDLEWARE. 14.

[6] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution.. In USS. 991–1008.

[7] Chia che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen,
Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E.

Porter. 2014. Cooperation and security isolation of library OSes for multi-process
applications.. In EUROSYS. 9:1–9:14.

[8] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. 2016 (2016), 86.

[9] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating Remote Attestation with Transport Layer Security.
CoRR abs/1801.05863 (2018).

[10] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn
Song. 2020. Keystone: an open framework for architecting trusted execution
environments.. In EUROSYS. 38:1–38:16.

[11] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David M. Eyers, Rüdiger
Kapitza, Christof Fetzer, and Peter R. Pietzuch. 2017. Glamdring: Automatic
Application Partitioning for Intel SGX.. In USENIX ATC. 285–298.

[12] Joshua Lund, Jeff Griffin, and Nolan Leake. 2019. Technology preview for Secure
Value Recovery. https://signal.org/blog/secure-value-recovery/

[13] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Compre-
hensive Survey. ACM Comput. Surv. 51, 6 (2019), 130:1–130:36.

[14] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A Secure
Database Using SGX.. In IEEE Symposium on Security and Privacy. 264–278.

[15] Phillip Rogaway and Thomas Shrimpton. 2004. Cryptographic Hash-Function
Basics: Definitions, Implications and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance. IACR Cryptol. ePrint Arch. 2004
(2004), 35.

[16] AMD SEV-SNP. 2020. Strengthening VM isolation with integrity protection and
more. White Paper, January (2020).

https://signal.org/blog/secure-value-recovery/

	Abstract
	1 Introduction
	2 Design
	2.1 Threat Model
	2.2 Extended Attestation Mechanism
	2.3 Data Migration Policy

	3 Current work
	References

