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ABSTRACT
Applications that use passwords or cryptographic keys to authenti-
cate users or perform cryptographic operations rely on centralized
solutions. Hardware Trusted Platform Modules (TPMs) do not offer
a way to replicate material, making access in a distributed envi-
ronment difficult. Meanwhile, remote services require a constant
network connection and are a central point of failure. Administra-
tors access to such services means total and permanent compromise
of the secrets.

We present SEEDS, an SGX based secure decentralized multi-
user store for cryptographic secrets. SEEDS prevents secrets from
leaking even against attackers with access to user credentials by
providing an API to use keys without reading them. SEEDS tolerates
long network partitions and uses CRDTs to reconcile state, making
it a viable mechanism for local authentication.

SEEDS provides a base for distributed SGX capable applications
through an expressive policy engine. It represents both all data
and metadata like users as entries in a key value store, both of
which are governed by policy. SEEDS also allows developers to add
cryptographic protocols to existing enclaves by composing existing
SEEDS operations.

We demonstrate how to use SEEDS as a secrets manager with
two applications. We present a decentralized and highly available
alternative to LDAP plus Kerberos. We also describe a software U2F
token implementation.
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1 INTRODUCTION
Security applications ranging from authentication systems like
LDAP and Kerberos to password managers all have the problem
of securely storing and using cryptographic secrets across multi-
ple hosts. These systems decrypt secrets in memory before using
them, allowing attackers to exfiltrate them even if the secrets are en-
crypted at rest. Replicating these secrets across hosts for availability
or caching further exposes them to attackers.

A possible solution is to store keys in a TPM or a TEE based
system that allows cryptographic operations without exposing
them to the host. TPMs [1] are hardware devices installed on a host
that securely store secrets and provide an API for applications to
perform cryptographic operations. TPMs are centralized and cannot
share state across devices. cTPM [6] and CKS [12] provide similar
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Security
Multi-User Access Control #    
Denial of Service # # #  
Compromised User -  #  
Compromised Host   G# G#

Functionality
Replication # G# G#  
Disconnected Operations - # G#  
Arbitrary Data # # #  

Table 1: Comparison of TEE and TPM related secrets man-
agers. Single node TEEs are accessible only locally. Dis-
tributed TEE systems do not ensure availablity and do not
support multiple users. CKS and cTPM use a cloud machine
that is a single point of failure.

services over the network to allow a user or service to perform
cryptographic operations across machines.

Table 1 compares these three systems. Both cloud based systems
depend on network connectivity, limiting their use for offline ap-
plications. Both are similar to a local TPM in that they provide a
fixed API of cryptographic protocols and primitives. Both do not
provide perfect confidentiality for the keys. For CKS, an attacker
with admin privileges can trivially extract the secrets by abusing
the system’s update mechanism. Clients also depend on constant
connectivity to the cloud machine. cTPM fully trusts the remote
cloud machine it uses to share keys between devices.

We present SEEDS, a TEE based decentralized secrets store that
provides strong security, high availability and extensibility to sup-
port a broad set of security applications. SEEDS runs on each de-
vice and provides a replicated key-value store that exposes crypto-
graphic primitives. Developers define policies that limit the possible
damage from a compromised host or user. SEEDS provides an exten-
sibility mechanism to allow developers to implement cryptographic
protocols inside the TEE.

SEEDS is motivated by the observation that many security appli-
cations require the ability to store cryptographic secrets, replicate
those secrets between hosts and perform cryptographic operations.
These applications use relatively simple logic that does not require
communications with other hosts. SEEDS provides a decentralized
storage system that supports the application logic without exposing
cryptographic secrets.

SEEDS provides control over fine-grained policy to allow appli-
cations to customize their security guarantees. Developers define a
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policy that restricts what cryptographic operations can be executed
on a given key-value pair. The policy also controls modifications to
the set of hosts and the policy itself. For example, private keys can
be restricted to only signing when authorized by a specific principal
(but never read), or the policy can be made immutable so that even
a malicious admin cannot enable reading cryptographic keys.

While cryptographic primitives are common across applications,
cryptographic protocols are not. SEEDS allows applications to add
new API calls at runtime through small scripts interpreted inside
the enclave. The new calls are subject to the policy, which prevents
an attacker from adding malicious scripts that export secrets.

Our extensibility subsumes the need for certain upgrades to
SEEDS. Enclave upgrades typically involve migrating data from an
old to a new trusted instance. An attacker with admin privileges can
then ‘upgrade’ to an instance that exposes all data to the untrusted
host. Similarly, if reading out a key is truly impossible then that
key is bound to the enclave instance. Replacing it means we lose
the key.

We use strong eventual consistency to ensure high availability
while guaranteeing that updates converge when devices come on-
line. Conflict-Free Replicated Data Types (CRDTs) allow us to pro-
vide eventual consistency with well defined semantics. These se-
mantics allows us to use simple application logic to avoid any
security implications of reconciling state.

We developed two applications based on SEEDS: First, we replace
LDAP and Kerberos with a distributed, secure, and highly avail-
able service built using NSS and PAM modules that communicate
directly with SEEDS. Second, we use SEEDS to build a replicated
password manager with support for PKI authentication methods.

2 OVERVIEW
SEEDS stores all data and metadata as a key-value (KV) store. Each
key is of the format <type>.<user>.<identifier>, for the type
of data, user it belongs to, and unique key. Each piece of data
has a specific type corresponding to the data it represents. For
example, a private key has a different type from a symmetric key
or a monotonic counter.

SEEDS provides a separate API for each type as shown in Ta-
ble 2. For example, the public-private key type supports generate,
encrypt/decrypt, sign/verify, and delete. Notice that there is
no call to directly read the key. Since SEEDS only allows access
through the API, the keys are inaccessible from outside the enclave
by all accounts.

The same rules hold for the metadata types, like those for ma-
chines or users. For example, the metadata for each machine in
SEEDS is represented as a KV pair of type ‘machine’. The API for
this type is get, put, and delete.

Each key has an associated policy that further restricts operations
on the key. Policies are allow lists that define the API calls allowed
by each user for a key. A possible use of policies is, for example,
to temporarily revoke the private key a user by preventing all API
calls to it. Policies support multi-user environments and prevent
compromised users from damaging or leaking other users’ keys.
As we show in Section 3, policies are flexible enough to prevent
administrators themselves from reading secrets.
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get ✓ ✓ ✓
put ✓ ✓ ✓ ✓ ✓
delete ✓ ✓ ✓ ✓ ✓
inc/dec ✓
sign/verify ✓
encrypt/decrypt ✓ ✓
authenticate ✓ ✓ ✓
generate ✓ ✓ ✓
hmac ✓ ✓
key exchange ✓

Table 2: The SEEDS API by field type. The policy can restrict
operations further conditional on the appropriate user cre-
dentials. We support multiple cryptographic algorithms for
each operation. The policy and machines are stored in the
key-value store itself as a reserved portion of the names-
pace.

SEEDS allows developers to dynamically define new API calls
to enable new cryptographic protocols. Developers write scripts
that use our cryptographic primitives and other basic functions
for string manipulation to implement cryptographic protocols that
execute entirely inside of the enclave. API calls are themselves
protected by the policies to prevent writing malicious scripts that
leaks otherwise inaccessible secrets.

For example, we can create a new SEEDS call that implements
U2F authentication. The call increments a counter, concatenates
several strings and uses the private key to sign a SHA256 hash of
the concatenated string. All operations happen fully withing the
enclave, and SEEDS enforces existing policies at each step.

Each node in SEEDS stores a full copy of the key-value store and
exchanges updates with other nodes opportunistically. Updates are
exchanged using TLS connections terminated inside the enclave. If
the device loses connectivity, SEEDS reestablishes communications
when connectivity is restored and merges updates with other nodes.

SEEDS implements strong eventual consistency that ensures all
nodes converge and presents applications with a consistent view.
Strong eventual consistency allows nodes to survive network parti-
tions, offline operations, and even DoS attacks. SEEDS specifically
relies on conflict-free replicated data types (CRDTs) [4] (see Sec-
tion 3) to achieve strong eventual consistency.
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2.1 Threat Model
SEEDS runs on SGX-capable user devices and allows local appli-
cations to submit commands. Communication happens through
untrusted IPC or a locally attested channel between an SGX appli-
cation and a SEEDS enclave.

The threat model assumes a powerful adversary that can control
any machine in the SEEDS cluster. As a result, the system can fail
to respond to enclave requests, respond incorrectly, or generate
malicious requests to the enclave. The adversary can read main
memory by performing memory dumps or DMA operations but
cannot read or write enclave memory.

All untrusted software can be subverted, including the untrusted
code of SEEDS. We assume that there are no exploitable software
or hardware bugs within the trusted code or the firmware that
can be used to influence enclave code execution. Additionally, the
adversary can interferewith network traffic bymodifying, dropping,
delaying, and reordering packets.

In addition, the attacker can get hold of a user’s credentials. With
these credentials the attacker can impersonate a user to the SEEDS
enclave, and make calls on their behalf. The attacker still cannot
directly access the enclave, but only submit API calls on behalf of a
valid user. All API calls and operations will still be protected by the
policy.

We do not protect against side-channel [13, 20] or speculative
execution [5, 7] attacks as they are out of the scope of this work.
Existing research has developed side-channel countermeasures and
tools to assist in detecting potential speculative execution bugs
using code instrumentation and static analysis [15, 16]. Finally,
we do not protect against denial of service (DoS) attacks [8] that
prevent the enclave from executing.

2.2 Security Goals
The security goal of SEEDS is to protect the confidentiality of user
secrets from system and user compromise. All SEEDS functions
should be secure from any malicious software on the host. We
ensure this by using SGX to prevent an attacker from reading or
writing enclave data from a compromised untrusted host.

SEEDS should also prevent an attacker from exfiltrating data
even when they have access to user credentials. An attacker might
use enclave secrets, but should not be able to read them out. That
is, the damage of the attack should be limited to the scope and
privileges of that user.

Additionally, an attacker should not be able to launch a replay
or rollback attack on SEEDS. Replay attacks subvert a program by
executing previously authorized operations, while rollback attacks
revert state. Hence replaying any requests between an application
and SEEDS or updates between SEEDS replicas should not execute
or influence the state in any way.

Since updates are applied immediately at the local replica, an
adversary can interfere with a replica and prevent it from discover-
ing new updates. As a result, the disconnected replica will service
local requests with stale data. SEEDS should gracefully continue
execution after connectivity is restored. Moreover, SEEDS should
be usable for local authentication while offline.

passwd .* allow ANY:{ authenticate} OWNER:{get ,put}
passwd.pw allow ANY:{ authenticate} OWNER:{put}
policy .* allow ANY:{get}

Figure 1: A subset of the SEEDS policy for passwords in our
LDAP replacement application. Access is guarded by both a
global and a local policy. The user cannot change the pass-
wordwith ID pw because the local policy does not allow them,
even if the global one does. The final policy prevents any
policies, including itself, from being modified.

3 DESIGN
SEEDS has three main elements: the API and policy, extending
functionality through scripts, and the replication mechanism.

3.1 API and Policies
Table 2 shows the SEEDS API for each type. SEEDS provides ap-
plications with a key-value store and a rich set of cryptographic
primitives. The cryptographic primitives operate on passwords,
symmetric keys, public-private keys, and counters. We chose these
primitives because they allow us to support a wide range of appli-
cation.

The table shows that by default certain types of data can be but
not read. This includes PKI and symmetric keys, which can be used
for authentication and encryption/decryption. We allow reading
passwords from the enclave by default, but developers can prevent
reading passwords through the use of policies.

SEEDS represents every piece of information as a tuple in the
key-value store. This includes metadata such as policies and host
membership. A policy’s key is the identifier of the KV pair it corre-
sponds to, and its value is the set of operations allowed by a user
(e.g., <user>:{<operation>,...}). The user can refer to a partic-
ular user or be ANY if it refers to all users, or OWNER if it applies to
the owner of the key.

Policies can globally apply to types. For example, an application
might declare all passwords to be writable by their owners, but not
readable. This prevents the passwords from leaking in the event
of a compromise. For an operation to succeed it should be permis-
sible by both the global policy and any applicable per-key policy.
This prevents an attacker from adding policies that give them read
privileges to an unreadable key.

Policies are key-value pairs in SEEDS and their permissions are
thus also governed by policies. Users can turn policies read-only to
prevent them from being modified by a malicious user. We use a
type based policy to permanently block policy updates. This policy
also applies to itself, preventing attackers from undoing it.

Figure 1 shows a subset of the policy for our LDAP replacement.
The password for user U for key pw uses a global policy that allows
its owner to call get and put, and a per-key policy that allows only
put calls. Both policies allow any user to call authenticate. Since
a call is only allowed if allowed by all applicable policies, the user
U can change the password using put, but not read it. Other users
cannot change user U’s password. The last policy in the figure turns
all policies including itself read-only by preventing put calls. This
prevents an attacker from adding get to the list of allowed calls.
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u2f_authenticate(appID , U2FKeyID , challenge)
{

counter = seeds.inc(U2FKeyID+"_cnt");
presentBit = 1;
response = concat(appID , presentBit , counter ,

challenge);
hash = sha256(response);
signature = seeds.sign(U2FKeyID+"_key", hash);

return (counter , signature);
}

Figure 2: The dynamically loaded SEEDS function for au-
thenticating using the U2F protocol. The user sends their
credentials, the unique ID of the application requesting au-
thentication, and the remote host’s challenge. The function
signs the authentication response and increments the to-
ken’s counter.

3.2 Safe Extensibility
SEEDS allows developers to extend the API by adding new crypto-
graphic protocols using an embedded interpreter. The interpreter
allows small scripts to chain together cryptographic operations
on keys and basic string manipulations inside of the enclave. This
allows SEEDS to expose new cryptographic protocols without re-
quiring any code changes and protect the intermediate steps of any
cryptographic protocol.

New API calls are implemented as scripts that execute other
key-value store cryptographic primitives. These calls run with the
privileges of the user that invoked them and the policy is enforced
on the individual cryptographic calls. The script does not have
direct access to the key-value store, which prevents a malicious
administrator from undermining the security model.

The interpreter runs a simple subset of Scheme that prevents
malicious scripts from damaging the enclave. The scripts cannot
make OCALLSs, and are prevented from using more than a few
kilobytes of memory. This is because API calls are expected to
combine together cryptographic primitives to implement protocols,
and do not do any significant processing.

Figure 2 shows pseudo code for the U2F authentication provided
by our password manager. It uses a private key and a monotonic
counter to implement the U2F protocol. The U2F protocol uses
the monotonic counter when sending authentication requests to
prevent replay attacks. The protocol concatenates this counter with
the application ID and the challenge, and hashes the result. It then
signs the hash with the private key and sends the result out. All the
steps in the process are simple and in this case the algorithm has
no flow control. We can implement the authentication function as a
new API call that uses SEEDS’ already existing PKI and monotonic
counter data types.

3.3 Distributed Updates
SEEDS has relaxed consistency guarantees to ensure availability
regardless of connectivity. The relaxed consistency guarantees do
not affect the system in practice. Updates are relatively uncommon
because users create new keys infrequently. Moreover, most users
are typically using one or more connected machines at the same

time and they mostly update their own data. Thus concurrent up-
dates from different users are rare in most applications we have
considered.

Machines use point to point TLS sockets that are terminated
inside the enclave for updates. Enclaves combine SGX attestation
with the TLS handshake [10], embedding the enclave report in the
X.509 certificate. Enclaves prevent forking attacks by inspecting
each other’s global version vector (see below) during TLS setup to
ensure they are not stale.

SEEDS reconciles state updates between machines using conflict-
free replicated data types (CRDTs). SEEDS uses state based CRDTs
that send all of enclave state instead of just the operations to make
reconciling state easier. SEEDS has CRDT operations that corre-
spond to the KV store’s put/get/delete operations.

These three operations are not commutative, so we define a
deterministic resolution strategy to ensure the CRDTs converge.
A put supersedes concurrent deletes, and concurrent puts use
last-writer-wins semantics. We define ‘last’ using the version vector
as our notion of time relative to other hosts. Concurrent updates
are deterministically resolved using the machine identifier.

SEEDS also offers a monotonic counter data type that is trivial
to implement as CRDT. We use it exclusively for the authentication
U2F token in our password manager application (see Section 4).

Conflict Resolution SEEDS uses Optimized OR Sets (Opt-OR
Sets) [4], for CRDTs. Regular OR Sets [18] define last-writer-wins
semantics using tags whose total size grows indefinitely. Opt-OR
sets retain these semantics and ensure bounded space usage with-
out garbage collection (GC [21]). GC methods require acknowl-
edgements and ordered message delivery, both incompatible with
SEEDS’ model.

Opt-OR sets need a local version vector for each key value pair
on each replica, and a global one for the whole key-value store.
SEEDS implements updates by sending out the store’s state all at
once as a single message. State based CRDT replication allows us
to handle out-of-order state updates. SEEDS uses each key-value
pair’s local vector to enforce the CRDT’s semantics when merging.

The version vector modestly increases the space requirements
for each pair, but is acceptable for our applications. Similarly, the
bandwidth cost for sharing state based updates is low because each
key-value pair is small. It is also only incurred only when SEEDS
sends out updates, which happens infrequently because of relaxed
consistency.

4 APPLICATIONS
We have been developing two applications on top of SEEDS to
explore these ideas. First, we built a decentralized user management
system to replace the traditional LDAP plus Kerberos architecture.
Second, we built a password manager that uses SEEDS to replicate
passwords and keys between a user’s devices.

4.1 Decentralized LDAP/Kerberos Alternative
Lightweight Directory Access Protocol (LDAP) and Kerberos are
popular protocols for managing user accounts and login credentials.
They are often used together, with LDAP managing account infor-
mation and Kerberos managing credentials. Each machine is issued
keys that give it read-only access to LDAP and Kerberos to prevent
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making account information widely available. Correctly configur-
ing these services is difficult. These services are also a single point
of failure and susceptible to DoS attacks.

To improve performance and allow offline operation adminis-
trators often use a persistent cache on clients that stores password
hashes and account information. A variety of programs triggers
LDAP calls, e.g., running ls requires mapping user and group IDs
to names that result in costly calls to the LDAP service if the infor-
mation is not cached. By persisting the cache, users can continue
to use their laptops while offline.

SEEDS Decentralized User Management Service. We built a decen-
tralized user management service using SEEDS. To add a machine
to the cluster, the administrator initializes the SEEDS enclave and
pairs it with any existing machine. Even though the service is de-
centralized, only specific users can add and remove hosts, users
and groups from the system.

Our usermanagement service consists of a command-line tool for
setup and administration. On each host, we install our Pluggable
Authentication Modules (PAM) and Name Service Switch (NSS)
modules. These modules use SEEDS to implement several functions
that service user and group information from the local replica.

Administrators can use our command-line tool for adding a new
host to an existing cluster, and managing users and groups.

The PAM module, libpam_seeds.so, implements the PAM au-
thentication and account APIs to allow machines to login by vali-
dating passwords or hardware tokens against the SEEDS database.
Applications like login and su use PAM to call into the enclave to
verify user credentials.

The NSS module, libnss_seeds.so, provides the POSIX C li-
brary with access to user and group information including a user’s
UID, home directory, shell, group membership. NSS provides access
to all the information a POSIX system would typically query from
the passwd and group files. The NSS API allows several other files
in the /etc/ directory to be served to hosts.

We implement the service by storing user passwords in SEEDS
using the key passwd.<user>.pw. The password type by default
has the methods put, get, delete, and authenticate. We remove
the getmethod from the type as shown in Figure 1 to prevent read-
ing a password and only allow the put method by the owner, and
authenticatemethod by anyone. The deletemethod is available
only to the root user.

The service is distributed and eventually consistent, which pro-
vides similar guarantees to a multi-master OpenLDAP deployment.
Our consistency guarantees ensure that machines can use the
SEEDS NSS/PAM modules to log in locally regardless of connectiv-
ity. Complications due to the eventual consistency model are minor
and also can occur in any multi-master deployment.

Kerberos Functionality
We can simplify our Kerberos implementation to skip large parts

of the protocol since the service is now distributed and includes the
client’s local machine. The Kerberos ticket granting service (TGS)
normally first creates a ticket granting ticket (TGT) for the client
that it encrypts with a hash of the client’s password before sending
it over an untrusted channel. The client uses the TGT to request
service tickets from the TGS to authenticate with other machines.

We can instead create service tickets for network services directly
from SEEDS without needing a TGT and a TGS. SEEDS can locally
generate the equivalent of a service ticket after authenticating the
user. To fully support the single sign-on benefits, we would need to
implement a GSS authentication module similar to Kerberos. Unlike
Kerberos, we do not need the keytab for the machine and service
keys to be stored in plaintext.

4.2 Password Manager and Virtual Token
We built a password manager based on SEEDS that replicates cre-
dentials between a user’s devices. Updates to the credentials stored
in SEEDS propagate to all devices when those have connectivity.
The SEEDS password manager stores passwords and public-private
keys. PKI keys can be used as a software U2F token.

The passwordmanager has a software Universal 2nd Factor (U2F)
token. The U2F protocol provides two-factor authentication (2FA)
to protect user accounts even when an attacker successfully steals
their password. Most U2F tokens are physical devices which means
that losing them locks a user out of their accounts. Users usually
need to register multiple U2F tokens for each account and store
them in separate places which is time consuming and a burden for
many.

To address this practical issues we built U2F support into our
password manager to emulates a U2F token through SEEDS. This
simplifies the use of U2F to prevent phishing or stealing passwords
but does not provide a physical button due to limitations in SGX.
These U2F tokens are available on all devices a user owns, allowing
the user to not worry about registering and securing multiple physi-
cal tokens. They protect the U2F authentication process, essentially
a PKI signature, with the use of a password or pin.

We use libcuse to emulate a U2F HID USB device that looks
like a physical token to applications. Web browsers and OpenSSH
use the standard libfido2 library to authenticate the user against
the software token. No code changes to applications or libfido2
is necessary.

We implement the authentication operation using the code shown
in Figure 2. The code implements the construction of the authen-
tication response using the initial challenge and the unique key
identifying the U2F private key. We use the private key only for
signing without exposing it to the untrusted host.

Thwarting Replay Attacks. An issue with the SEEDS U2F token
is the reconciliation of counter updates. U2F devices use monotonic
counters to detect stolen credentials. If the U2F counter is stored
in the key-value store, the highest counter should always be used.
Our CRDT counter is monotonically increasing even in the case of
conflicts.

However, the asynchronous nature of SEEDSmakes it possible to
use the token from twomachines against the same service, resulting
in the service believing a key may have been compromised. Services
typically alert the user of this potential issue. If the user runs SEEDS
across all their devices they are unlikely to physically travel between
two machines that have no connectivity to each other. Carrying
any device running SEEDS would prevent such a case.
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5 DISCUSSION AND FUTUREWORK
Policy Namespaces SEEDS currently has a set format for the key
namespace using each key’s type and user. This has implication on
the granularity of policies, which are either per-key or apply to all
keys of the same type. For example, having a policy that turns all
policies read-only prevents us from adding any more policies to
the enclave. This limits us from expanding enclave functionality.

We are looking into adding arbitrary namespaces in the enclave
that are decoupled from key types and users. The type of each
key in this scheme is not part of the name. This change allows us,
for example, to turn all policies in a namespace read-only without
interfering with other namespaces.

Dynamically Added Types SEEDS supports adding scripts
that chain together existing commands, but does not allow new
ones. This prevents attackers from adding malicious calls that leak
otherwise unreadable keys. This is not a limitation because we only
store secrets, which are mathematical objects with a set API of
available operations. Adding a new fundamental operation for, e.g.,
a private key is improbable.

We are adding the option to dynamically load new types into
SEEDS. This gives us forward compatibility with new cryptographic
primitives. Developers load the new type into SEEDS along with
all valid operations. The type’s API is set at load time and cannot
be expanded, much like that of builtin types. An attacker can thus
add maliciously crafted types, but cannot subvert the security of
existing ones. SEEDS provides an API to allow all users to inspect
dynamically loaded functionality.

SEEDS Language Semantics SEEDS prioritizes the safety of
the scripting language. The interpreter’s performance does not
matter, because cryptographic computations are done using builtin
native functions that dominate processing time. It does matter, how-
ever, for the dynamically added types described above. For future
work we are looking into ways of implementing cryptographic
primitives efficiently.

Mandatory Access Logging and Rollbacks We are imple-
menting a mandatory access logging (MAL) mechanism for SEEDS
to allow for auditing. This logging mechanism is part of the main
KV data structure and interposes on operations. The implementa-
tion of the log is simple and is just another type with an associated
namespace.

State-based replication captures multiple operations in a single
update, and gives all or nothing behaviour we expect. Only a few
of the most recent operations will be kept to ensure the logs do
not consume too much space. MAL can help users determine if an
adversary gained physical access to their device, since no operations
should succeed without authentication.

The MAL also allows us to implement rollbacks of state. We
currently use state based CRDTs, which allow eventual consistency
without message delivery guarantees. However, since they also
overwrite past state they force us to implement simple conflict
resolution policies. With logging we are able to roll back individual
operations using the semantics of SEEDS operations and resolve
conflicts between dependent operations. The MAL could also allow
us to apply undo computing [9] techniques to repairing damage
from a compromised user account.

6 RELATEDWORK
There has been extensive research on storage systems based on
SGX[2, 3, 11, 19]. These systems are performance oriented and
assume connectivity between the nodes of the system. They use
strong consistency at the cost of availability. Moreover, these sys-
tems use SGX to prevent a system compromise from allowing an
attacker to access sensitive data. They do not protect against an
attacker with access to the right credentials from exfiltrating data.

TPMs have also been implemented as an abstraction in software.
cTPM [6] uses a remote machine as a TPM, assuming a preshared
key between the remote machine and the local node. Compromising
the remote machine permanently compromises the preshared key.
fTPM implements a software TPM for a single node using firmware
and ARM TrustZone, but is easily applicable to SGX.

CKS [12] provides an interface similar to that of a TPM, pro-
viding encryption and decryption capabilities using a key. CKS
allows auditing every key operation and thus requires constant
connectivity, which prevents high availability and offline opera-
tion. Moreover, CKS faces the issue that an attacker with access
to a user’s credentials can abuse the enclave update feature. The
attacker can ‘update’ the enclave to a version they have created,
which in turns directly exports the secrets. SEEDS is resistant to
such compromise.

The use of interpreters in enclaves is a well-established practice.
Twine compiles code to WebAssembly before running it in the
enclave [14]. MapReduce for SGX uses a Lua interpreter to run
user defined map and reduce scripts at runtime [17]. We adopt
similar techniques, to support expanding the enclave API at runtime
without changing the SGX enclave quote.

7 CONCLUSION
We present SEEDS, an SGX based decentralized, highly available
secrets manager with an expressive cryptographic and policy API.
SEEDS is based on the observation that a lot of security oriented
applications use simple logic on top of a storage layer. Our system
prevents attackers from extracting secrets from the enclave even
when they compromise the system and intercept user credentials.
It is also distributed and highly available even on devices with
intermittent connectivity. We demonstrate the system’s usefulness
by using it to secure two security sensitive applications.
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