
Improving Speculative Execution Attack Mitigations via
Mitigation-Aware Compilation

Alon Berkenstadt
Technion

Haifa, Israel
alon.b@campus.technion.ac.il

Yakir Vizel
Technion

Haifa, Israel
yvizel@cs.technion.ac.il

Mark Silberstein
Technion

Haifa, Israel
mark@ee.technion.ac.il

ABSTRACT
Trusted execution environments (TEEs) rely on trusted CPUs. How-
ever, recent disclosures reveal data leakage in transient execution
attacks, which leave TEEs vulnerable.

Software-based techniques that harden the code to prevent un-
desirable misspeculation side-effects are the only way to protect
against such attacks until hardware gets patched. Such software
mitigations are implemented now in compilers and special post-
compilation tools. Unfortunately, the mitigations are not properly
integrated into compilers and are typically added as an afterthought,
creating security and performance issues.

We report several such issues. First, we find that some optimiza-
tions turn non-vulnerable code into vulnerable. Thus, the order in
which mitigations and optimizations are applied affects the security
and requires mitigation pass on an optimized version of the code.
At the same time, post-optimization patches are not accounted for
by popular optimization techniques, leading to incorrect decisions
by optimizer heuristics and significant performance loss.

To overcome the first problem, we suggest an efficient and secure
integration of Spectre V1 and Spectre V2 mitigation techniques. For
the second, we present a few changes to optimization heuristics
that gain up to X5.97 speedup for LVI mitigated code.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; • Software and its engineering → Compilers.

KEYWORDS
Transient execution, code generation, software analysis

1 INTRODUCTION
Transient execution attacks such as Spectre, Microarchitectural
Data Sampling (MDS), and Load Value Injection (LVI) [10, 21, 26,
29, 30], are an Achilles heel of modern processors. More crucially,
however, they effectively break the fundamental confidentiality and
integrity guarantees of Trusted Execution Environments (TEEs)
offered by most recent processors. As a result, mitigating these
attacks is a prerequisite to securely executing bug-free programs
in TEEs.

By their very nature, the attacks that exploit hardware vulner-
abilities cannot be efficiently mitigated without changing CPU
hardware itself. The hardware development and deployment cy-
cle, however, are inherently slow, so hardware mitigations cannot
usually be completed in the time window of the publication em-
bargo between the vulnerability discovery to its public disclosure.
For example, the time frame between the discovery of LVI to its

full hardware mitigation has been two years ([15]). Moreover, re-
placing the whole fleet of vulnerable CPUs with new ones is often
unrealistic.

Therefore, software mitigation is often the only practical means
to achieve security. Existing solutions [8, 12, 14] are based on code
patches that either prevent potentially vulnerable speculative execu-
tion entirely or strive to stop the collateral effects of misspeculation
that can be exploited. Recent compilers [8] offer the convenience
of applying these patches automatically as part of the compilation
toolchain.

Software mitigations, however, come with high performance
costs. For example, LLVM’s LVI mitigation instruments each mem-
ory access with LFENCE, leading to dramatic slowdowns [23]. Sev-
eral tools have been developed to reduce the performance penalty,
such as SpecFuzz [24] and PIBE [17], which leverage dynamic run-
time information to eliminate the patches that are deemed unnec-
essary.

Our main claim is that the rapid evolution of software mitigations
has led to a fractured and incoherent ecosystem of tools, patches,
techniques, and compiler hacks. Consequently, the resulting software
has lower performance and is less secure than one would hope.

In this paper, we demonstrate several instances of this problem.
First, we observe that optimization techniques in modern compilers
might introduce new vulnerabilities. For example, Indirect Call Pro-
motion (ICP) transforms an indirect call into a direct call preceded
by a conditional branch, which effectively makes it vulnerable to
Spectre V1 as reported by SpecFuzz [24]. Notably, recent works
apply ICP-based techniques to reduce the overheads of Spectre V2
mitigation in the Linux kernel [2, 17], which in turn makes the code
vulnerable to Spectre V1.

Thus, invoking dynamic optimizations after the Spectre mitiga-
tion pass would be insecure. On the other hand, manually updating
all potentially vulnerable optimizations is tedious. Therefore, we
show that invoking SpecFuzz as the last stage of the compilation
pipeline improves performance significantly.

Second, we observe that many optimizations are oblivious to
the code modifications introduced by the post-compilation miti-
gations. Indeed, the heuristics used by the compiler to determine
whether or not to perform the code transformations do not account
for the mitigation code, thus resulting in potentially incorrect de-
cisions, i.e., adding an ineffective optimization or missing a useful
one. To this end, we show two examples. First, we demonstrate a
substantial performance improvement in LVI-hardened code due
to updating the cost function of the loop unrolling optimizer to
consider LFENCEs inserted by LLVM to mitigate LVI. Similarly, we
show that the Indirect Call Promotion (ICP) heuristic should be
modified to account for the cost of Spectre V1 and V2 mitigations.



SysTEX ’22 Workshop, March 1, 2022, Lausanne, Switzerland Alon Berkenstadt, Yakir Vizel, and Mark Silberstein

Interestingly, the updated heuristic affects the performance of the
code without mitigations.

In summary, our work highlights the need for a more consistent
and holistic approach to integrating software mitigations of specula-
tive execution attacks into compilers and development toolchains.

2 BACKGROUND AND RELATEDWORK
2.1 Spectre V1
This vulnerability is attributed to the speculative execution of mis-
predicted conditional branches. For example, a bounds check bypass
(BCB) vulnerability allows an attacker to leak memory by control-
ling an index to an array accessed by a program. A memory read
might directly lead to confidential data leakage. However, mem-
ory writes are also of concern because they might enable transient
control-flow hijacking similar to memory corruption through a
buffer overflow.

Software mitigations. Branch-free code is a trivial solution for
Spectre V1 and is used in constant-time algorithms. For instance,
cryptographic algorithms use it to mitigate timing-attacks that
might be speculative but not necessarily [6, 9].

Intel suggested using an LFENCE instruction to prevent specu-
lative execution by waiting until the branch condition is properly
resolved [16].

Speculative Load-Hardening (SLH)[12] relies on strict hard-
ware enforcement of data dependencies upon load operations or
their results. It effectively delays load instructions by creating fake
dependencies of preceding conditional jumps.

Optimizations. Several efforts have been focused on identifying
Spectre V1 gadgets in software that might become vulnerable,
assuming the hardware speculation behavior [24, 25, 31, 32]. They
analyze the code (statically or dynamically at runtime) and do not
apply the mitigation patches to branches deemed secure.

For example, SpecFuzz[24] enables dynamic testing for specu-
lative execution vulnerabilities. It performs speculation exposure,
i.e., it simulates the mispredicted control flow and identifies Spec-
tre V1 vulnerabilities by fuzzing the mispredicted branches. It is
implemented as a post-optimization LLVM pass that instruments
code with simulation and analysis logic. Dynamic testing produces
a report of vulnerabilities that applies to the input code of the in-
strumentation pass. Then, the analyzed code combined with the
report can be served as an input to a selective mitigation pass and
complete the compilation process. As with other dynamic anal-
ysis methods, the chosen fuzzing driver affects the precision of
the analysis, whereas not covered branches cannot be considered
benign.

2.2 Spectre V2
This vulnerability is attributed to the speculative execution of mis-
predicted indirect branches. Indirect branches include indirect calls,
indirect jumps, and return instructions. A mispredicted specula-
tively executed control flow may lead to information leakage.

Software mitigations. Retpoline is a recommended mitigation
for Spectre V2. It transforms indirect calls into another software

construct with the same functionality but a more constrained spec-
ulative behavior. Retpolines are often not used despite the recom-
mendations because they have an inherent performance penalty as
execution serializers [11, 13].

Optimizations. PIBE [17] and JumpSwitches[2] focus on increas-
ing the performance of the Linux kernel, which is configured to
mitigate speculative control flow hijacking. They suggested using
ICP to reduce the Retpoline overheads. In addition, PIBE suggests
using inlining to eliminate return instructions and their respective
hardening overhead. We observe that ICP is vulnerable to Spectre
V1, the vulnerability inherited by these optimizations.

2.3 Load Value Injection (LVI)
Explicit or implicit load instructions might use dummy values or
other data from shared microarchitectural buffers during faults
or assisted instructions. An attacker can poison the shared buffers
with her data or use a dummy value to produce the desired behavior
in the victim’s execution. This attack was shown to particularly
affect SGX enclaves [29].

Softwaremitigations. LVImitigation requires serialization of load
instructions so that their possibly malicious loaded value cannot be
used during transient execution. It is implemented by inserting an
LFENCE before each memory access and before speculative branches
and by avoiding return instruction as it involves both operations
of loading a return address from the stack and an indirect jump to
that loaded address. This mitigation is deployed in LLVM [8].

In contrast to the Spectre vulnerabilities, which are not expected
to be fully eradicated, LVI is considered a bug and is expected to be
fixed in future processor generations. In any case, however, running
programs on already manufactured processors requires software
mitigation to protect against it [15].

2.4 Mitigations in Commodity Compilers
Commodity compilers have already deployed mitigations for the
vulnerabilities above. For instance, LLVM applies LFENCE/SLH
patches against Spectre V1, Retpolines against Spectre V2, LVI-CFI
to mitigate LVI vulnerabilities related to control-flow hijacking.

Speculative Execution Side Effect Suppression (SESES) is a more
robust approach to mitigate multiple vulnerabilities at once. It in-
serts an LFENCE instruction before any memory access. In addition,
it breaks indirect branches with address in memory (e.g., RET in-
struction) into load instruction followed by an indirect jump with
address in a register. Then it inserts an LFENCE as a serialization
barrier before speculative control-flow branch instructions[8].

3 THREAT MODEL AND EXPERIMENTAL
SETUP

We use a standard threat model where an attacker has full control
over transient mechanisms. The attacker then abuses that capability
to initiate an incorrect transient execution that eventually leaks
data. The described settings fit previously known attacks, including
cryptographic key exfiltration[5, 7, 18–20, 22, 27, 28, 33, 34].

We use Intel Xeon CPU E5-2620 v2 2.10GHz, Ubuntu 18.04.3 64-
bit, Linux kernel v4.15.0-70. Each experiment is executed 10 times,
and the mean is reported. The standard deviation is below 5%.



Improving Speculative Execution Attack Mitigations via Mitigation-Aware Compilation SysTEX ’22 Workshop, March 1, 2022, Lausanne, Switzerland

Only Only
without optimization with optimization

Xerces-C++ 6 25
Xalan-C++ 18 25
JM19.0 45 2
OpenSSL 2009 2007

Table 1: Unique Spectre V1 vulnerabilities reported by Spec-
Fuzz for programs compiled with different compiler configu-
rations.

4 DEPENDENCY BETWEEN CODE
OPTIMIZATIONS AND SPECTRE
MITIGATION PASSES

Code optimization passes and the speculative execution attack
mitigation pass are not independent. However, today these passes
are not aware of each other.

On the one hand, optimizations are usually applied to a final code
version. Yet, some optimizations may introduce new vulnerabili-
ties. For instance, Indirect Call Promotion (ICP) inserts conditional
branches, making it vulnerable to Spectre V1. Similarly, conditional
move instructions sometimes get transformed into conditional
branches too. Additionally, various optimizations such as inlining,
global value numbering (GVN), and other loop optimizations[3],
might cause excessive register spilling because of increased register
pressure, thereby introducing new load instructions which must be
hardened to prevent LVI.

Moreover, some optimizations may improve both security and
efficiency, e.g., by eliminating load and branch instructions. For
example, function inlining eliminates Spectre V2-vulnerable return
instructions. Similarly, constant propagation might eliminate a con-
ditional branch if it is redundant because its condition is always
satisfied. Thus, if the mitigation pass is applied after the optimiza-
tion pass, it will end up instrumenting fewer instructions and result
in lower overall overhead.

To illustrate that optimizations may both introduce new vul-
nerabilities and eliminate existing ones, we consider four large
production programs (see Table 1). We compile them with and
without profile-guided/link-time optimizations and run SpecFuzz
on the results 1. We enable compilation with Retpolines to protect
against Spectre V2 in both cases, but no Spectre V1 mitigations are
introduced.

Table 1 shows the number of unique vulnerabilities reported by
SpecFuzz in each configuration. For example, it finds 2009 vulner-
abilities in OpenSSL compiled without optimization, which were
not present in the optimized version, and 2007 vulnerabilities vice
versa. The shared vulnerabilities would be mitigated similarly in
both cases.

Modifying the optimizations to include the hardening natively as
part of the optimization transformation might be a viable solution,
but doing so might lead to unnecessary overheads (since it does
not account for dynamic information whereas SpecFuzz does) and
breaks the modularity of the compiler toolchain. Accordingly, we

1LLVM performs link-time optimizations on the IR, hence SpecFuzz can be applied
after them

claim that the mitigation pass must be performed on the final code
version after applying both static and dynamic optimizations.

We now show the concrete example of a security issue with the
Indirect Call Promotion (ICP) optimization.

5 SPECTRE V1 VULNERABILITY IN ICP
Indirect Call Promotion (ICP) is an optimization technique that can
improve performance by reducing the indirect branchmisprediction
penalty [4]. By applying the optimization, an indirect branch is
transformed into a software construct, including direct calls to
most-frequently-used targets of the indirect branch. The possible
targets are usually collected via profiling.

Listing 1 shows an example where fun_ptr is a function pointer
implemented with an indirect call. A profiler discovers that the
common target addresses are of the functions foo() and bar(). The
code is modified to call these targets directly, whereas conditional
branches find the correct target at runtime. In case the target is not
one of the statically instantiated ones, an indirect call is invoked as
a fallback.

// Function pointer
fun_ptr(x);
// ICP
if (fun_ptr == foo)

foo(x);
else if (fun_ptr == bar)

bar(x);
else

fun_ptr(x);

Listing 1: Indirect Call Promotion

This construct, however, is vulnerable to Spectre V2. The mitiga-
tion replaces the indirect branch with a Retpoline.

On the other hand, the introduced conditional branches make
the code vulnerable to Spectre V1. As a result, an attacker may
affect the control flow integrity and guide the execution into any of
the branches, in which there could be access to secret data, which
it then can attempt to leak.

We note that ICPwith Retpoline has been introduced by PIBE[17]
and Jumpswitches[2] to reduce the Retpoline performance over-
heads. However, both these proposals suffer from the Spectre V1
vulnerability above.

5.1 Eliminating Vulnerabilities with SLH
Whole program SLH is the immediate solution for mitigating Spec-
tre V1 vulnerabilities caused by vulnerable dynamic optimizations
such as ICP. However, adding SLH to the optimized code might
result in higher overheads, potentially nullifying the benefits of the
optimization and having an adverse effect on the performance.

To see whether the dynamic optimization is still worthwhile
even with Spectre V1 mitigation, we choose four C/C++ workloads,
including OpenSSL, JM19.0, Xerces-C++, and Xalan-C++, character-
ized by frequent indirect calls (i.e., many opportunities for the ICP
optimization). For OpenSSL, we use its internal measurement of
signing rate with the standardized NIST P-224 algorithm. The rest
use workloads from the Alberta Workloads[1], where, for JM19.0,



SysTEX ’22 Workshop, March 1, 2022, Lausanne, Switzerland Alon Berkenstadt, Yakir Vizel, and Mark Silberstein

Speedup

Xerces-C++ 1.33
Xalan-C++ 1.84
JM19.0 1.05
OpenSSL 1.38

Table 2: Speedups of ICP optimization inmitigatedworkloads

we specifically use the decoder ldecod.exe, and the sample applica-
tion DOMCount for Xerces-C++.

Table 2 shows speedups achieved by using ICP on an SLH-
hardened build with -O3 flag, and Retpolines. In all these bench-
marks, ICP is profitable even with SLH. Thus we conclude that
using a Spectre-V1 - protected version of ICP is still beneficial.

5.2 Eliminating Vulnerabilities with the
Post-Optimization SpecFuzz

The previous approach used static SLH hardening. Nowwe consider
an alternative method to mitigate Spectre V1 by using SpecFuzz.

We apply SpecFuzz on awhole program after running all dynamic
optimizations to protect all potentially vulnerable branches added
by them.

The baseline is a compilation with -O3 flag and Retpoline (re-
ferred to as native in the graphs).We then add dynamic optimization,
including the Profile Guided Optimizations (PGO) and Link Time
Optimizations (LTO) in LLVM.

Each compilation configuration uses different types of Spectre
V1 mitigation: unprotected, with static whole-program SLH, or
SpecFuzz. The speedups are normalized to the native, unprotected
version (first bar for each application).

The results are presented in Figure 1. We observe that in some
cases, SpecFuzz offers substantial benefits over SLH, particularly
in combination with dynamic optimizations. For example, JM19.0
shows 30% higher performance with SpecFuzz over SLH when used
in conjunction with the dynamic optimizations but no benefit in
the unoptimized version.

6 MITIGATION-AWARE OPTIMIZATION
HEURISTICS

In this section, we show two examples in which mitigation-aware
optimization heuristics improve the generated code performance.

6.1 Revisiting ICP
The ICP heuristic considers the overheads related to promoting
call targets. Specifically, the heuristic determines which call targets
need to be transformed into direct calls among all the discovered
targets. The higher the frequency of the call, the higher the chances
it will be transformed into a direct call.

However, ICP does not consider the extra overhead of hardening
the conditional jumps associated with each direct call target as part
of the ICP construct. This overhead biases the promotion to higher
call frequency by making less frequent targets non-profitable.

We evaluate several frequency values and report the best one
discovered. Our heuristic promotes the most likely target if the

1 2 3

Xerces-C++ 0.96 0.99 0.99
Xalan-C++ 0.96 0.98 0.99
JM19.0 0.38 0.86 0.87
OpenSSL 0.50 0.87 0.93

Table 3: Cumulative distribution of call targets per call site

probability of it being called exceeds 50% and the second most
likely if it exceeds 35%. Otherwise, it spares the extra overhead
in the ICP construct. For comparison, in a worst-case scenario,
the default heuristic would promote the most likely target for any
probability above 30% and the second most likely for a probability
of at least 21%.

Results are presented in Figure 2. The baseline is the performance
of the default heuristic (first bar in each bar pair). We observe that
the new heuristic performs worse than the default one for the
vulnerable code and improves the performance of the mitigated
code.

JM19.0 stands out in that it enjoys an exceptionally high speedup
of X1.31 for the mitigated version. Table 3 sheds light on a difference
between the workloads that explains these results. The statistics of
indirect call executions derived from the dynamic analysis show
that many call sites are candidates for promoting no more than a
single target with 96% in Xerces-C++ and Xalan-C++. The distribu-
tion in the JM19.0 workload gives more weight to multiple targets,
which guides the heuristic to promote multiple targets for call sites
more often.

6.2 Integrating SESES Mitigations With
Unrolling Optimization

LFENCEs are used in LVI mitigations for hardening memory ac-
cesses and speculative branches. The overhead of such mitigation
is substantial because the hardening affects frequently executed
instructions.

We claim that the cost model that LLVM applies to determine
whether to perform optimizations or not should be modified to
accommodate the introduction of these serialization instructions.
To achieve this result, we modify the heuristic to minimize the
number of executed memory accesses and branches.

While LLVM natively supports many related passes such as
vectorizer, inliner, loop unroller, register allocator, elimination of
redundant branches and loads, we showcase the implications of our
observation on the loop unrolling alone. A naive solution would be
to increase the default threshold of the loop unroller, thus, merging
more loop iterations and thereby reducing the number of executed
conditional jumps in the loop control logic.

The problem, however, is that the unroller optimization is ap-
plied in the middle of the optimization pipeline, and the change
causes later passes to perform poorly if the naive solution above
is applied. For instance, merging two iterations might make the
register allocator heuristic spill more than twice the number of
registers, causing many more memory accesses. Thus, an LFENCE
instruction removed with a conditional branch due to unrolling



Improving Speculative Execution Attack Mitigations via Mitigation-Aware Compilation SysTEX ’22 Workshop, March 1, 2022, Lausanne, Switzerland

Native
Dynamic

Native
Dynamic

Native
Dynamic

Native
Dynamic

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

JM19.0 Xerces-C++ Xalan-C++ OpenSSL

Vulnerable
SLH
SpecFuzz

Figure 1: Speedups in different builds with varying Spectre V1 mitigations

Vulnerable
Mitigated

Vulnerable
Mitigated

Vulnerable
Mitigated

Vulnerable
Mitigated

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

JM19.0 Xerces-C++ Xalan-C++ OpenSSL

Default heuristic
New heuristic

Figure 2: Speedups in Spectre V1 vulnerable and mitigated builds using different ICP heuristics

grows into multiple such instructions associated with the additional
memory accesses due to the excessive register spillage.

To solve this problem, we leave the native unroller unmodified
and create an additional loop unroller at a later pipeline stage after
the register allocation. This way, we can guarantee no interference
with the following pipeline passes. The passes would have better
optimization opportunities if we did modify the native unroller.
However, it would require modifying many optimization and anal-
ysis passes to take advantage of the new opportunities and avoid
performance decrease.

The unrolling is done by duplicating loop body instructions and
patching the necessary branch targets. As a result, we skip loop
control 𝐹 − 1 times for unrolling factor F every iteration of the
unrolled loop. Avoiding excessive register spillage becomes trivial
since register allocation was already done.

Some loops have a dynamic trip count, which is unknown at
the compile time. In this scenario, the loop can still be unrolled by
some factor F. The remainder of the division of the trip count by F
would be executed in another loop, called a remainder, which is a
duplication of the original loop. The increased code complexity of



SysTEX ’22 Workshop, March 1, 2022, Lausanne, Switzerland Alon Berkenstadt, Yakir Vizel, and Mark Silberstein

0 100 200 300
1

2

3

4

5

6

Figure 3: Speedups thanks to the mitigation-aware loop un-
roller over the native SESES build, for ∼300 standard bench-
marks in the LLVM Test Suite

adding a remainder loop might make the runtime loop unrolling
not worthwhile if the unrolled loop is not being entered enough
times. Thus, we use profiling to decide the unrolling factor - the
factor will not be greater than the average trip count.

The native loop unroller uses a heuristic with a parametric thresh-
old to determine the unrolling budget, meaning the loop is being
unrolled only by a factor that would keep the cost within budget.
We follow the same heuristic but increase the threshold.

Evaluation. To evaluate the performance of the mitigation-aware
loop unroller, we test it with the LLVM Test Suite. We enable the
SESES mitigation and Profile Guided Optimizations (PGO) for the
baseline. Figure 3 presents the speedups due to the new heuristic for
each of the ∼300 benchmarks. Results show that the new unroller
distinctively improves performance, and often by a significant factor,
with speedups of up to X5.97.

7 CONCLUSION
We foresee a new toolchain that achieves mitigation-aware compi-
lation, as can be seen in Figure 4. Ultimately, the unified Spectre V1
and Spectre V2 mitigation method can be generalized into a code
generation pipeline that should include mitigation-aware optimiza-
tions and properly ordered mitigations. The compilation process
leverages program semantics and speculative execution mitigation
knowledge to guide optimization and mitigation choices. Static
analysis and dynamic optimizations can help achieve better perfor-
mance while reducing the overheads of software mitigations.

Our work argues that security should be integrated holistically
into the compiler, considering inter-dependencies and changes in
the cost-benefit model for building efficient and secure programs.

REFERENCES
[1] José Nelson Amaral, Edson Borin, Dylan R Ashley, Caian Benedicto, Elliot Colp,

Joao Henrique Stange Hoffmam, Marcus Karpoff, Erick Ochoa, Morgan Redshaw,
and Raphael Ernani Rodrigues. 2018. The alberta workloads for the spec cpu 2017
benchmark suite. In 2018 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE, 159–168.

[2] Nadav Amit, Fred Jacobs, and Michael Wei. 2019. Jumpswitches: restoring the
performance of indirect branches in the era of spectre. In 2019 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 19). 285–300.

[3] Ivan Baev and Qualcomm Innovation Center. 2014. Controlling Virtual Register
Pressure in LLVM Middle-End. In LLVM Developers Meeting, Oct.

Compiler Optimizer
Mitigation 
enforcer

Whitelisting Blacklisting

Profiler Testing

src executable

Figure 4: The envisioned mitigation-aware compilation
pipeline

[4] Ivan Baev and Qualcomm Innovation Center. 2015. Profile-based indirect call
promotion. In LLVM Developers Meeting, Oct.

[5] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil
Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam
Morrison, et al. 2021. Speculative interference attacks: Breaking invisible spec-
ulation schemes. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 1046–
1060.

[6] Daniel J Bernstein. 2005. Cache-timing attacks on AES. (2005).
[7] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-

dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTher-
Spectre: exploiting speculative execution through port contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
785–800.

[8] Zola Bridges. 2020. [x86][seses] Introduce SESES pass for LVI. https://reviews.
llvm.org/D75939.

[9] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.
Computer Networks 48, 5 (2005), 701–716.

[10] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al.
2019. Fallout: Leaking data on meltdown-resistant cpus. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. 769–784.

[11] Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss, and Khaled N
Khasawneh. 2020. Evolution of defenses against transient-execution attacks. In
Proceedings of the 2020 on Great Lakes Symposium on VLSI. 169–174.

[12] Chandler Carruth. 2018. Speculative Load Hardening: A Spectre Vari-
ant 1 Mitigation Technique. https://docs.google.com/document/d/
1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0.

[13] Jonathan Corbet. 2018. Relief for retpoline pain. https://lwn.net/Articles/774743/.
[14] Intel Corporation. 2018. Speculative Execution Side Channel Mitigations.
[15] Intel Corporation. 2020. Processors Affected: Load Value Injection. https:

//www.intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/resources/processors-affected-load-value-injection.html.

[16] Intel Corporation. 2021. Intel® 64 and IA-32 Architectures Software Developer’s
Manual.

[17] Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik Van Der Kouwe. 2021.
PIBE: practical kernel control-flow hardening with profile-guided indirect branch
elimination. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 743–757.

[18] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1–13.

[19] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano
Giuffrida. 2020. Speculative Probing: Hacking Blind in the Spectre Era. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1871–1885.

[20] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 279–
299.

[21] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[22] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return stack
buffer. In 12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18).

[23] Michael Larabel. 2020. Google Engineer Shows "SESES" For Mitigating LVI +
Side-Channel Attacks - Code Runs 7% Original Speed. https://www.phoronix.
com/scan.php?page=news_item&px=LLVM-SESES-Merged.

https://reviews.llvm.org/D75939
https://reviews.llvm.org/D75939
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0
https://lwn.net/Articles/774743/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/processors-affected-load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/processors-affected-load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/processors-affected-load-value-injection.html
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Merged
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Merged


Improving Speculative Execution Attack Mitigations via Mitigation-Aware Compilation SysTEX ’22 Workshop, March 1, 2022, Lausanne, Switzerland

[24] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020.
SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In 29th {USENIX}
Security Symposium ({USENIX} Security 20).

[25] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng Yin, and
Tao Wei. 2021. SpecTaint: Speculative Taint Analysis for Discovering Spectre
Gadgets. (2021).

[26] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-privilege-boundary
data sampling. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 753–768.

[27] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. Netspectre: Read arbitrary memory over network. In European Symposium
on Research in Computer Security. Springer, 279–299.

[28] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdom with tran-
sient out-of-order execution. In 27th {USENIX} Security Symposium ({USENIX}
Security 18). 991–1008.

[29] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking transient execution through microarchitectural load value

injection. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 54–72.
[30] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue in-flight data load. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 88–105.

[31] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and
Abhik Roychoudhury. 2020. Kleespectre: Detecting information leakage through
speculative cache attacks via symbolic execution. ACM Transactions on Software
Engineering and Methodology (TOSEM) 29, 3 (2020), 1–31.

[32] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2019. oo7: Low-overhead Defense against Spectre attacks
via Program Analysis. IEEE Transactions on Software Engineering (2019).

[33] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the virtual memory abstraction with transient
out-of-order execution. (2018).

[34] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. 2020. Exploring branch
predictors for constructing transient execution trojans. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 667–682.


	Abstract
	1 Introduction
	2 Background And Related Work
	2.1 Spectre V1
	2.2 Spectre V2
	2.3 Load Value Injection (LVI)
	2.4 Mitigations in Commodity Compilers

	3 Threat Model And Experimental Setup
	4 Dependency Between Code Optimizations And Spectre Mitigation Passes
	5 Spectre V1 Vulnerability In ICP
	5.1 Eliminating Vulnerabilities with SLH
	5.2 Eliminating Vulnerabilities with the Post-Optimization SpecFuzz

	6 Mitigation-aware optimization heuristics
	6.1 Revisiting ICP
	6.2 Integrating SESES Mitigations With Unrolling Optimization

	7 Conclusion
	References

