
Do we need consumer-side enclaved execution?
Kobe Vrancken

kobe.vrancken@cs.kuleuven.be
imec-DistriNet, KU Leuven

Heverlee, Belgium

Frank Piessens
frank.piessens@cs.kuleuven.be
imec-DistriNet, KU Leuven

Heverlee, Belgium

ABSTRACT
The disappearance of Intel SGX on the most recent generation of
consumer processors has opened a debate on the value of client-
side enclaves. In this short paper we illustrate the usefulness of
enclaved execution on consumer devices by highlighting a subset
of the unique use cases this technology can enable. Firstly, allowing
client-side browser languages to execute inside trusted enclaves can
open new innovative possibilities for web applications. Secondly,
the ability for consumers to share and donate CPU cycles with
integrity and confidentiality guarantees allows for improvements to
niche fields such as volunteer computing. Thirdly, the possibility is
created for mutually distrusting actors in peer-to-peer networks to
bundle computational resources. Furthermore, decentralized peer-
to-peer systems can offer energy-efficient alternatives in blockchain
consensus protocols. To conclude, we also discuss Digital Rights
Management (DRM), one of the more controversial applications of
consumer-side enclaved execution.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
Trusted Computing, Intel SGX
ACM Reference Format:
Kobe Vrancken and Frank Piessens. 2022. Do we need consumer-side en-
claved execution?. In Proceedings of the 5th Workshop on System Software
for Trusted Execution (SysTEX ’22 Workshop). ACM, New York, NY, USA,
3 pages.

1 INTRODUCTION
Recent releases of processor hardware show that Intel has depre-
cated Intel SGX on consumer processors. Instead, focus has nar-
rowed towards the more popular cloud server use case. This de-
cision makes sense. Applications that focus on cloud computing
have been dominating the application-focused part of the trusted
computing research space. They have been explored thoroughly
throughout previous years. In this short paper, we would like to
make a case against dropping support for consumer-side enclaved
execution by exploring some of the many use cases that it can offer.

2 CASE STUDIES
2.1 Trusted web pages
Previous research [5][4] has enabled execution of client-side web
languages like JavaScript or WebAssembly inside SGX enclaves.
This enables web applications to move trusted code to the client-
side.

SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland
2022.

As an example, consider the problem of input validation. In order
to enhance user experience, a website should immediately notify
a user whenever they enter an invalid value into an input field.
Typically, some client-side JavaScript will verify entered values and
display appropriate error messages. From a security perspective
these client-side checks are, of course, meaningless. User input will
always need to be validated a second time at the server-side. Using
enclaves, validation can be moved fully to the client-side. The input
values are sent to the enclave instead of the server. The enclave
validates the value and immediately provides feedback to the client.
When all values are entered and correct, the enclave can send them
to the server using encryption, preventing any modification of the
validated values by the client.

2.2 Domain-specific web applications
The use of trusted client-side web languages can also enable func-
tionality for web applications that would otherwise be impossible to
achieve. Take for instance the example of a chess website. A website
such as Lichess [3] offers their visitors the ability to evaluate chess
positions using a chess engine. These chess engines evaluate the
chess board and provide a metric for players that indicates if either
the black or the white player has an advantage in the game. The
evaluation is often used by players to analyze their own decisions
and strategy after completion of a game.

Chess engines are very computationally intensive. The more re-
sources a chess engine has available, the more deeply can it analyze
a position. Lichess and other websites offer visitors the ability to
evaluate a chess position in the cloud, albeit at a limited depth. If
more depth is required, it is also possible to enable local client-side
evaluation of the chess position. Since all the work is now off-loaded
to the visitor, the visitor can freely decide on the evaluation depth.
Consider a chess game played between two players. Commonly,
both players will perform a client-side analysis of the game. Both
client machines will thus perform exactly the same computations,
assuming they choose the same evaluation depth. This is redundant
but necessary. Neither client can trust the result of the other client,
thus sharing or collaborating on the chess evaluation could lead to
manipulated and incorrect results. Now assume that both clients
have an SGX-enabled processor and that the chess engine evalua-
tion is executed within a protected enclave. Due to the integrity of
computation offered by a trusted enclave there would be no way
for a client to manipulate the result of the chess engine. This allows
players to share their local evaluations with one another. A protocol
could be devised allowing the players to collaborate on an evalua-
tion thereby enabling them to evaluate the positions even deeper.
Furthermore, the result of local evaluations could now be published
directly on the chess website, allowing any future spectators that
explore chess games to use these analyses without needing to spend
any computational resources. While the chess engine use-case is



SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland Vrancken and Piessens

a very specific example, it highlights that consumer-side enclaved
execution can prove to be a valuable resource for domain-specific
problems.

2.3 Pay-by-computation
Another use case, explored in [4], is the pay-by-computation model
for the web. Currently, web applications often rely on the use of web
advertisements as a form of payment for services rendered. Enclaves
can offer an interesting alternative. Visitors of websites can donate
CPU cycles. This allows websites to distribute workloads among
website visitors thereby potentially saving on infrastructure costs.
For websites with heavily parallelizable workloads this can open up
new possibilities. An architecture where most of the computational
load ismoved to visitors can provide unlimited scaling opportunities
given the workload scales linearly with the amount of users. In
short, consumer-side enclaved execution can allow for new scaling
possibilities for certain classes of websites and can offer alternatives
to the traditional advertisement-focused payment model of the web.

2.4 Volunteer computing
The sharing or donating of CPU cycles is also a key element in vol-
unteer computing. Volunteer computing is a branch of computing
where a group of volunteers offer CPU time for free to a project.
BOINC [1] is the largest andmost famous platform that supports vol-
unteer computing. On this platform scientists can register projects
that require a large amount of computational resources. Any volun-
teer with a working computer can download the BOINC client and
donate CPU cycles to any of these projects. To ensure correctness of
computation some BOINC projects need to send the same workload
to multiple volunteers. This ensures that no single volunteer can
cheat the system by providing false computation results. Enclaves
could eliminate this redundancy. By running the workload inside an
attested enclave on the machine of an untrusted volunteer, the in-
tegrity of computations can be guaranteed. It becomes unnecessary
to send the same workload to multiple volunteers. This elimina-
tion of redundancy in volunteer computing by relying on enclaved
execution has been explored in [9] and [4].

2.5 Peer-to-peer infrastructure
In previous examples we have explored the donation or selling
of CPU cycles from one or more volunteers or website visitors to
a single party. There is an even more general case to be consid-
ered whereby a group of mutually distrusting peers group their
computational resources in a peer-to-peer fashion. To illustrate
consider a compute-heavy task that need to execute periodically
and that can be parallelized, e.g. compiling or rendering. Whenever
a peer needs to execute a compute-heavy task, this work can be
distributed evenly among a group of peers. Enclaved execution is
used to execute the distributed workload on each peer. This avoids
a bottleneck on the local machine and speeds up the workload. Each
peer can make use of this computational power provided by the
group. In return, during idle moments, each peer executes parts
of jobs for other peers. A credit system could even be devised to
make sure this happens fairly. In [12] the example of distributing
compilation jobs between a group of mutually distrusting peers
using enclaved execution was explored in depth.

2.6 Blockchain
In the context of decentralized peer-to-peer systems, blockchains
are another prime example. As a more energy efficient alternative to
Proof-of-Work, Intel themselves have proposed a consensus method
called proof-of-elapsed-time (PoET) [7] used in the hyperledger
Sawtooth. PoET relies on Intel SGX enclaves to stochastically elect
a leader in a distributed consensus algorithm. To become a viable
alternative to Proof-of-Work, consumer-side enclaved execution is
thus essential.

2.7 Digital Rights Management
A more controversial application of consumer-side enclaved exe-
cution is Digital Rights Management (DRM). Using enclaves it is
possible to decrypt and load code at runtime, thereby obfuscating
the code that is executing. Companies can use this to hide their
algorithms to prevent, for instance, reverse engineering. This is
used in practice in DRM applications.

As an example, to play Ultra HD Blu-Ray videos today, an SGX
enabled processor is required [6]. The removal of SGX support in
the latest release of Windows 11 saw consumers unable to play
Ultra-HD Blu-Ray video [10]. Another example is WideVine [8],
Google’s content protection system for premium media used by
Google Play, YouTube, Google Fiber, Netflix, Hulu, Amazon, etc.
This system offers three protection levels, two of which rely on
consumer-side trusted execution environments for protection of the
underlying media. In addition to media protection, researchers [2]
have also proposed the usage of DRM to prevent cheating in online
games.

3 CHALLENGES
In this section we highlight a small subset of challenges that occur
for client-side enclaved execution. For one, applications such as
trusted client-side form validation require widespread adoption
of the technology. Furthermore, there is a great heterogeneity in
consumer-side trusted execution environments. The security guar-
antees provided by Intel SGX are different from those, for instance,
provided by ARM TrustZone or AMD SEV. Furthermore, in terms
of security, one should consider possible risks to the client. En-
claves could potentially be used as a way to hide malware on a
consumer device [11]. Tackling these and other challenges related
to client-side enclaved execution will remain important in future
research.

4 CONCLUSION
In this short paper we have highlighted several applications of en-
claved execution on consumer hardware. This small set of examples
already shows that widespread support of enclaves on consumer
devices can offer possibilities for innovation in many areas of com-
puting. The technology can be used in innovative ways to enhance
existing applications. However, not all applications are without
controversy. Applications that use SGX to obfuscate instead of
innovate shine a bad light on the consumer-side enclave ecosys-
tem. The question remains whether the positive innovations that
consumer-side enclaved execution can offer outweighs the poten-
tially controversial applications of that same technology.



Do we need consumer-side enclaved execution? SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland

REFERENCES
[1] David P Anderson. 2004. Boinc: A system for public-resource computing and

storage. In Fifth IEEE/ACM international workshop on grid computing. IEEE, 4–10.
[2] Erick Bauman and Zhiqiang Lin. 2016. A case for protecting computer games

with SGX. In Proceedings of the 1st Workshop on System Software for Trusted
Execution. 1–6.

[3] Thibault Duplessis. 2010. Lichess. https://lichess.org/. Accessed: 2022-01-25.
[4] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza. 2019.

Acctee: A webassembly-based two-way sandbox for trusted resource accounting.
In Proceedings of the 20th International Middleware Conference. 123–135.

[5] David Goltzsche, Colin Wulf, Divya Muthukumaran, Konrad Rieck, Peter Piet-
zuch, and Rüdiger Kapitza. 2017. Trustjs: Trusted client-side execution of
javascript. In Proceedings of the 10th European Workshop on Systems Security.
1–6.

[6] Intel. 2017. High Dynamic Range (HDR) on Intel Graphics. Technical White Paper.
Intel. 13 pages. https://www.intel.com/content/dam/support/us/en/documents/
graphics/HDR_Intel_Graphics_TechWhitePaper.pdf

[7] Intel. 2017. PoET 1.0 Specification. https://sawtooth.hyperledger.org/docs/core/
releases/latest/architecture/poet.html. Accessed: 2022-02-17.

[8] Alex Lee. 2018. WideVine DRM: Getting Started with Devices. Technical Report.
Google. 20 pages. https://web.archive.org/web/20190504082905/https://storage.
googleapis.com/wvdocs/Widevine_DRM_Getting_Started_Devices.pdf

[9] Jonathan MMcCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi
Isozaki. 2008. Flicker: An execution infrastructure for TCB minimization. In
Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008. 315–328.

[10] Jimmy Pezzone. 2022. Intel SGX deprecation impacts DRM and Ultra HD Blu-ray
support. https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-
drm-ultra-hd-blu.html. Accessed: 2022-01-28.

[11] Michael Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical enclave
malware with Intel SGX. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 177–196.

[12] Kobe Vrancken, Frank Piessens, and Raoul Strackx. 2019. Securely deploying
distributed computation systems on peer-to-peer networks. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing. 328–337.

https://lichess.org/
https://www.intel.com/content/dam/support/us/en/documents/graphics/HDR_Intel_Graphics_TechWhitePaper.pdf
https://www.intel.com/content/dam/support/us/en/documents/graphics/HDR_Intel_Graphics_TechWhitePaper.pdf
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://web.archive.org/web/20190504082905/https://storage.googleapis.com/wvdocs/Widevine_DRM_Getting_Started_Devices.pdf
https://web.archive.org/web/20190504082905/https://storage.googleapis.com/wvdocs/Widevine_DRM_Getting_Started_Devices.pdf
https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html
https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html

	Abstract
	1 Introduction
	2 Case studies
	2.1 Trusted web pages
	2.2 Domain-specific web applications
	2.3 Pay-by-computation
	2.4 Volunteer computing
	2.5 Peer-to-peer infrastructure
	2.6 Blockchain
	2.7 Digital Rights Management

	3 Challenges
	4 Conclusion
	References

