
A Case for Unified ABI Shielding in Intel SGX Runtimes
Jo Van Bulck, Fritz Alder, Frank Piessens

imec-DistriNet, KU Leuven, Belgium

ABSTRACT
With hardware support for trusted execution, most notably In-

tel SGX, becoming widely available, recent years have seen the

emergence of numerous shielding runtimes to transparently protect

enclave applications in hostile environments. While, at the applica-

tion level, a wide range of languages and development paradigms

are supported by diverse runtimes, shielding responsibilities at

the lowest level of the application binary interface (ABI) remain

strikingly similar. Particularly, the ABI dictates that certain CPU reg-

isters need to be cleansed and initialized via a small, hand-written

assembly stub upon every enclave context switch.

This paper and call for action analyzes the ABI sanitization lay-

ers of 8 open-source SGX shielding runtimes from industry and

academia, categorizes historic vulnerabilities therein, and identifies

cross-cutting tendencies and insights. We conclude that there is no
technical reason for maintaining separate, often notoriously com-

plex and vulnerable ABI code bases. Moving forward, we outline

challenges and opportunities for a single, unified ABI sanitization

layer that complies with best practices from software engineering

and can be scrutinized and integrated across SGX runtimes.

ACM Reference Format:
Jo Van Bulck, Fritz Alder, Frank Piessens. 2022. A Case for Unified ABI

Shielding in Intel SGX Runtimes. In Proceedings of the 5th Workshop on
System Software for Trusted Execution (SysTEX ’22 Workshop). ACM, New

York, NY, USA, 3 pages.

1 PROBLEM STATEMENT
Recent years have seen the rise of an emerging software ecosystem

taking advantage of modern processor support for trusted execu-

tion, most notably Intel SGX. A key element in this ecosystem is

the development of numerous open-source shielding runtimes that
can transparently protect third-party enclave applications against

their untrusted environments. Notable examples include Intel’s

SGX-SDK [11] and Microsoft’s Open Enclave (OE) [13] for devel-

oping C/C++ enclaves, Fortanix’s Enclave Development Platform

(EDP) [7] integrated into the Rust compiler, the Enarx [5] shield-

ing system for WebAssembly, and the library operating systems

Gramine [10] (formerly Graphene [16]) and SGX-LKL [14].

The complex requirement of transparently shielding enclave ap-

plications from their untrusted environment has been previously

broken down into two successive tiers of interface sanitization

responsibilities [17]. First, shielding runtimes are responsible to

cleanse low-level machine state so as to establish a trustworthy ap-

plication binary interface (ABI) expected by the compiler. Relevant

sanitizations at the ABI level commonly include initializing selected

configuration registers and setting up a trusted stack on enclave en-

try, as well as scrubbing any secrets from CPU registers on enclave

exit. This bootstrapping phase is typically implemented bymeans of

a small, hand-written assembly stub that is transparently executed

SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland
2022.

on every enclave context switch. Next, a secondary stage, written in

a higher-level language, may sanitize application programming in-

terface (API) state, such as pointer arguments. It is worth noting that

low-level ABI shielding responsibilities are relatively contained and

language-agnostic, whereas sanitizing program-visible API state

is typically more complex and may be highly dependant on the

specific runtime and supported programming model.

Table 1: Overview of the Intel SGXABI vulnerability landscape. The
top rows compare ABI sanitization layers in terms of total lines
of code (as measured on January 20, 2022; using cloc) and lines
changed since original release (as reported by git; following re-
named/moved files). The third row distinguishes (aspired) produc-
tion runtimes fromresearch prototypes. The bottom rows listwhich
runtimes were found to be vulnerable to (), not vulnerable to (#),
or not analyzed by (–) prior attack studies.

SG
X-
SD

K*

O
E*
*

ED
P
G
ra
m
in
e

En
ar
x

G
oT
EE

SG
X-
LK

L

O
pe
nS
G
X

M
et
ri
cs LoC ABI stub 301 277 248 427 169 239 103 49

LoC changed 243 589 187 1,840 844 65 47 0

Production? ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Vu
ln
er
ab
ili
tie
s Entry flags [17] – – –

Entry stack [17] # # # – – –

Exit registers [17] # # # # – – –

Entry FPU [1] # # –

Exception stack [3] # # – –

* Derived runtimes include Apache Teaclave [15, 18], VeraCruz [2], and Google Asylo [9].

** Derived runtimes include EdgelessRT [4], and recent versions of SGX-LKL “OE edition”.

ABI vulnerability landscape. Several recent attack studies [1,

3, 17] have exploited subtle ABI-level sanitization oversights in SGX

shielding runtimes. Table 1 comprehensively overviews this ABI

vulnerability landscape by analyzing the sanitization layers of 8

open-source SGX shielding runtimes from industry and academia.
1

For every runtime, we report both its proneness to previous ABI

vulnerabilities, as far as it was analyzed by the corresponding attack

studies [1, 3, 17], as well as metrics obtained from the open-source

repositories in terms of the current total lines of code of the relevant

assembly stub, and lines changed since the original release. The

former metric provides a rough indication of the relative complexity

of the ABI layer, whereas the latter allows to assess how stable the

sanitization code has been.

A first important insight from Table 1 is that the complexity of

ABI sanitization is evidently non-trivial, ranging in the order of

hundreds of lines of carefully developed, hand-written assembly

logic. While larger ABI layers do not necessarily equate to more or

less vulnerabilities, undersized research prototypes [8, 12, 14] may

offer inadequate protection. Consider, for instance, SGX-LKL’s orig-

inal, especially vulnerable proof-of-concept ABI layer, which has

recently been retired in favor of adopting OE. Second, while the ef-

fort to develop a custom ABI sanitization layer has been duplicated

across all projects, there appears not to be a single runtime that has

1
Analysis data available at https://github.com/jovanbulck/sgx-abi-data.

https://github.com/intel/linux-sgx/blob/2ee53db4e8fd25437a817612d3bcb94b66a28373/sdk/trts/linux/trts_pic.S
https://github.com/openenclave/openenclave/blob/7249aa685d8faad177bd2096f07a70d26e9ab1c0/enclave/core/sgx/enter.S
https://github.com/rust-lang/rust/blob/74fbbefea8d13683cca5eee62e4740706cb3144a/library/std/src/sys/sgx/abi/entry.S
https://github.com/gramineproject/gramine/blob/65822f9bdf2dc8a9cde1c81cfc17b9166bb65ebb/Pal/src/host/Linux-SGX/enclave_entry.S
https://github.com/enarx/enarx/blob/99352a16ff0e0f070d8492c5deb8b173050e17bc/internal/shim-sgx/src/main.rs
https://github.com/epfl-dcsl/gotee/blob/014b35f5e5e9d11da880580cc654e2093ac8ad7a/src/runtime/asmsgx_amd64.s
https://github.com/lsds/sgx-lkl-musl/blob/22c91c211aaf4048a4f034084bb7fa202bd6071c/crt/sgxcrt.c
https://github.com/sslab-gatech/opensgx/blob/8872fc82b2da6158f7bdac6483c5689dc1062ca8/libsgx/sgx-entry.S
https://github.com/jovanbulck/sgx-abi-data

SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland Jo Van Bulck, Fritz Alder, Frank Piessens

Table 2: Overview of ABI patch timelines in SGX production run-
times. The top row provides initial commit dates as a reference. The
next rows list the dates of the initial patch (and the last revision,
if any) for the ABI sanitization responsibilities in the left column,
where � and ⋆ indicate vulnerabilities disclosed by the referenced
academic study and this work, respectively.

SGX-SDK OE EDP Gramine Enarx

Initial

commit

° 24/06/16 ° 29/08/17 ° 07/12/18 ° 20/06/16 ° 20/02/20

DF [17] � 17/10/19 � 09/10/19 07/12/18 01/05/19 20/03/20

AC [17] � 12/11/19 � 09/10/19 � 21/10/19 � 19/11/19 ⋆ 17/02/22

10/02/20

FPU [1] � 16/01/20 09/10/19 � 10/02/20 17/10/19 29/05/20

� 14/07/20 � 19/06/20

EXC [3] � 13/07/21 � 13/07/21 n/a 01/04/19 � 22/10/21

31/01/20

DF = direction flag sanitization; AC = alignment-check flag sanitization; FPU = extended-

state sanitization; EXC = exception handler stack pointer initialization.

been immune to all attacks (excluding runtimes that have not been

studied before). Third, relative to their size, these ABI software stubs

have been heavily modified over recent years. There is, further-

more, a clear discrepancy between research prototypes and aspired

production-quality runtimes in terms of code line changes, strongly

indicating that maintaining a secure ABI sanitization layer is an

ongoing and living effort. This point becomes especially evident

when comparing recent runtimes to OpenSGX [12], a discontinued

research prototype before SGX hardware and production runtimes

became widespread available. Compared to OpenSGX’s extremely

rudimentary (and incomplete) ABI sanitization layer, recent run-

times have clearly matured and ABI sanitization responsibilities

are now much better understood.

ABI patch timelines. Perhaps more concerning upon closer

inspection of historic ABI vulnerabilities is that insufficient coor-

dination between developers of different runtimes often allows

the same oversights to be repeated across different code bases.

Moreover, a lack of deeper understanding and scrutinization has

sometimes led to only partial patches being applied. For instance,

OE developers appear to have been first aware of FPU sanitiza-

tion oversights and tried to initially patch them, without informing

other potentially affected runtimes. A systematic attack study [1]

subsequently revealed that the initial OE patch, which was later

also adopted by EDP, lacked full understanding of the issue and left

some subtle attack surface, ultimately leading OE and EDP to have

to adopt a second patch. Similar observations hold for other ABI-

level sanitization pitfalls [3, 17] that were at some point partially

or fully understood by certain runtime developers, but not commu-

nicated towards other potentially affected projects (cf. Table 2). In

fact, our systematic analysis revealed a subtle alignment-check flag

sanitization oversight in Enarx, which has now also been patched.

2 TOWARDS ABI UNIFICATION
From our analysis of the ABI vulnerability landscape, we conclude

that SGX runtimes have substantially matured in recent years. We

welcome diversity at the application and programming language

levels, but we argue that the time is now ripe for making a first

step towards unification of shared insights at the ABI level. That

is, compliant with best practices from software engineering, code

duplication should be avoided wherever possible, and developers

efforts are instead better focused on one common project.We, hence,

envision a unified ABI shielding layer that can be jointly developed

and easily shared across SGX runtimes.

ABI shielding responsibilities. In principle, standardized call-

ing conventions adopted by mainstream compilers [6] would allow

a single ABI layer to transparently shield binaries of different run-

times supporting diverse programming languages. That is, the main

responsibility of the ABI layer is to bridge well-documented com-

piler expectations regarding the low-level machine state. Specifi-

cally, upon enclave entry, the ABI layer should (i) initialize CPU and

FPU configuration registers to expected sane values; (ii) point the
stack to trusted, in-enclave memory; (iii) jump to the runtime entry

point written in higher-level code; and, upon return, (iv) cleanse
all CPU registers not holding return values before enclave exit.

While there are some runtime-specific differences, especially

regarding step (ii) for optional, in-enclave exception handlers [3],

we argue that these differences are overcomable. Particularly, all

runtimes essentially follow the same high-level ABI shielding flow

that can be abstracted via a unified ABI layer supporting (nested)

enclave entry calls “ecalls”, out calls “ocalls”, and exception handlers.

Design principles. We envision a single, language-agnostic ABI

code base that can be easily integrated into varying SGX runtimes.

Specifically, the ABI library would be preferably standardized and

developed as a joint project in a standalone repository maintained

by relevant practitioners from industry and academia, e.g., via the

newfound Confidential Computing Consortium.

Integration of the ABI layer into various runtimes would proceed

through the linker. Particularly, all API-level shielding responsibili-

ties should be deferred to runtime-specific, higher-level code, and

runtimes should declare a standardized entry point name where

control is transferred to from the assembly code. Certain challenges

may exist in terms of adopting a uniform convention for the en-

clave’s binary layout. That is, the unifiedABI layerwill have tomake

assumptions on the locations and layout of trusted in-enclave stacks

for ecalls and exception handlers. Furthermore, in order to obtain a

relocatable enclave image, the uniform ABI layer would preferably

avoid any absolute symbols, e.g., by assuming all thread-specific

data structures are located relative to SGX’s hardware-provided

TCS pointer. We expect that any potentially remaining runtime-

specific ABI logic, e.g., support for 32-bit mode, could be relatively

easily encapsulated by means of precompiler configuration options.

3 CONCLUSIONS AND OUTLOOK
The logical next step in the emerging landscape of SGX shielding

runtimes is to strive for more unification. While limiting code di-

versity may come at the risk of introducing “superbugs” that would

be exploitable across all runtimes, we believe that continued attack

evidence supports the need to concentrate developer efforts on

a single ABI code base. We expect that such a unification would,

furthermore, inspire efforts to limit the risks of any remaining vul-

nerabilities through established methods, such as testing, fuzzing,

symbolic execution, and ultimately even formal verification.

https://github.com/intel/linux-sgx/commit/9441de4c38700bbc573bb0d363c34387022b7b1c
https://github.com/openenclave/openenclave/commit/244efe28bc04d0ecf5d9cffac55d03c79a01ee98
https://github.com/rust-lang/rust/commit/4a3505682e97c8e667338056ae216e4b84b22dd7
https://github.com/gramineproject/graphene/commit/1a1e199c79242cf1630ba6af5f57e34120790a0c
https://github.com/enarx/enarx/commit/ef6a9a8fe746452299aca2365b82c753a5e701ed
https://github.com/intel/linux-sgx/commit/b13ab0eae778ca0f6976e2800e8d19bfaf735d18
https://github.com/openenclave/openenclave/commit/efe75044d215d43c2587ffd79a52074bf838368b
https://github.com/rust-lang/rust/commit/4a3505682e97c8e667338056ae216e4b84b22dd7
https://github.com/gramineproject/graphene/commit/2de42097fe425c8a3f8153143f2df7f6ebdbe06a
https://github.com/enarx/enarx/commit/1292402fee54edfa822ad06f8dc1549d8a4331c9
https://github.com/intel/linux-sgx/commit/d166ff0c808e2f78d37eebf1ab614d944437eea3
https://github.com/openenclave/openenclave/commit/efe75044d215d43c2587ffd79a52074bf838368b
https://github.com/rust-lang/rust/commit/fc500368485bd2ebafea6a37da30f49c8be75aac
https://github.com/gramineproject/graphene/commit/c8a2a2ee873d84e72ca0fb5c724f258e65b6d866
https://github.com/enarx/enarx/commit/b1dc3d67149a493bd1b86b577f39cb3910b5466b
https://github.com/rust-lang/rust/commit/aeedc9dea9e0460488e0b6ce7fe3aaf50395774c
https://github.com/intel/linux-sgx/commit/9ddec08fb98c1636ed3b1a77bbc4fa3520344ede
https://github.com/openenclave/openenclave/commit/efe75044d215d43c2587ffd79a52074bf838368b
https://github.com/rust-lang/rust/commit/236ab6e6d631f073a8c3c7439af6b2ec58ce1f25
https://github.com/gramineproject/graphene/commit/560da76252529b123afca17998b96179ac5f9ad4
https://github.com/enarx/enarx/commit/34a5b730bb3b9438e408321ccd30d93efa14297d
https://github.com/openenclave/openenclave/commit/ad57b943be8f4caaa43174ed25f2a11a477786f3
https://github.com/rust-lang/rust/commit/33b304c5e0a620350e0eba0ceda2aab23f3b4e6f
https://github.com/intel/linux-sgx/commit/edfe42a517b3e4b1d81204c3cdef6da6cb35fefc
https://github.com/openenclave/openenclave/commit/16efbd6a97fcf69a5e170141c302afc0ed493e0f
https://github.com/gramineproject/graphene/commit/6d91f7fb298534c9028df0859b300131ff97a8ef
https://github.com/enarx/enarx/commit/799b202555a21b3efbf7cdd81dfc22d9304c47ab
https://github.com/gramineproject/gramine/commit/225e49903dc9baf0c601fd26e4b13db31821eeef

A Case for Unified ABI Shielding in Intel SGX Runtimes SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland

ACKNOWLEDGEMENTS
This research is partially funded by the Research Fund KU Leuven,

by the Flemish Research Programme Cybersecurity, and by a gift

from Intel Corporation. Jo Van Bulck and Fritz Alder are supported

by a grant of the Research Foundation – Flanders (FWO).

REFERENCES
[1] F. Alder, J. Van Bulck, D. Oswald, and F. Piessens. 2020. Faulty Point Unit: ABI

Poisoning Attacks on Intel SGX. In 36th Annual Computer Security Applications
Conference (ACSAC). 415–427.

[2] ARM Research. 2022. Veracruz: Privacy-Preserving Collaborative Compute.

https://veracruz-project.com/.

[3] J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai. 2021. SmashEx: Smashing SGX

Enclaves Using Exceptions. In 28th ACM Conference on Computer and Communi-
cations Security (CCS). 779–793.

[4] Edgeless Systems. 2022. Edgeless RT. https://github.com/edgelesssys/edgelessrt.

[5] Enarx Project. 2022. Enarx: WebAssembly + Confidential Computing. https:

//enarx.dev/.

[6] A. Fog. 2021. Calling Conventions for Different C++ Compilers and Operating

Systems.

[7] Fortanix. 2022. Fortanix Enclave Development Platform – Rust EDP. https:

//edp.fortanix.com/

[8] A. Ghosn, J. R. Larus, and E. Bugnion. 2019. Secured routines: Language-based

construction of trusted execution environments. In USENIX Annual Technical

Conference (ATC). 571–586.
[9] Google. 2022. Asylo: An Open and Flexible Framework for Enclave Applications.

https://asylo.dev/

[10] Gramine Project. 2022. Gramine – A Library OS for Unmodified Applications.

https://grapheneproject.io.

[11] Intel. 2022. Intel Software Guard Extensions – Get Started with the SDK. https:

//software.intel.com/en-us/sgx/sdk

[12] P. Jain, S. J. Desai, M.-W. Shih, T. Kim, S. M. Kim, J.-H. Lee, C. Choi, Y. Shin, B. B.

Kang, and D. Han. 2016. OpenSGX: An Open Platform for SGX Research.. In

23th Annual Network and Distributed System Security Symposium (NDSS), Vol. 16.
21–24.

[13] Microsoft. 2022. Open Enclave SDK. https://openenclave.io/

[14] C. Priebe, D.Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov, and P. Pietzuch.

2019. SGX-LKL: Securing the Host OS Interface for Trusted Execution. arXiv
preprint arXiv:1908.11143 (2019).

[15] The Apache Software Foundation. 2022. Apache Teaclave (Incubating). https:

//teaclave.incubator.apache.org/.

[16] C.-C. Tsai, D. E. Porter, and M. Vij. 2017. Graphene-SGX: A Practical Library OS

for Unmodified Applications on SGX. In USENIX Annual Technical Conference
(ATC).

[17] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and F. Piessens.

2019. A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding

Runtimes. In 26th ACM Conference on Computer and Communications Security
(CCS). 1741–1758.

[18] H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan, L. Li, Y. Zhang, T. Wei, and Z.

Lin. 2019. Towards Memory Safe Enclave Programming with Rust-SGX. In 26th
ACM Conference on Computer and Communications Security (CCS). 2333–2350.

https://veracruz-project.com/
https://github.com/edgelesssys/edgelessrt
https://enarx.dev/
https://enarx.dev/
https://edp.fortanix.com/
https://edp.fortanix.com/
https://asylo.dev/
https://grapheneproject.io
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://openenclave.io/
https://teaclave.incubator.apache.org/
https://teaclave.incubator.apache.org/

	Abstract
	1 Problem statement
	2 Towards ABI unification
	3 Conclusions and outlook
	References

