
Towards TEEs with Large Secure Memory and Integrity
Protection Against HW Attacks

Pierre-Louis Aublin
IIJ Innovation Institute

Tokyo, Japan

Mohammad Mahhouk
TU Braunschweig

Braunschweig, Germany

Rüdiger Kapitza
TU Braunschweig

Braunschweig, Germany

ABSTRACT
Providing integrity protection against physical attacks on a
large memory region is a difficult problem for Trusted Exe-
cution Environment (TEE) designers. This is due to the space
and computational cost to maintain the memory integrity tree.

Instead of trying to optimize the integrity tree, we propose a
novel approach that consists of combining two classes of TEEs:
one with a large secure memory but no integrity protection,
and another one with integrity protection but a small secure
memory. We briefly describe several use-cases, challenges, and
the implementation of a proof-of-concept over Intel SGX.

CCS CONCEPTS
• Security and privacy → Distributed systems security.

KEYWORDS
Trusted Execution Environment, Intel SGX, Integrity

ACM Reference Format:
Pierre-Louis Aublin, Mohammad Mahhouk, and Rüdiger Kapitza. 2022.
Towards TEEs with Large Secure Memory and Integrity Protection
Against HW Attacks. In Proceedings of Proceedings of the 5th Workshop
on System Software for Trusted Execution (SysTEX ’22 Workshop). ACM,
New York, NY, USA, 3 pages.

1 INTRODUCTION
Trusted Execution Environments (TEE) such as Intel SGX [5]
or ARM TrustZone [12] give security guarantees to applica-
tions running in an untrusted environment where attackers
have privileged access to the software stack (including the OS)
and/or the hardware.

Unfortunately, providing integrity guarantees against physi-
cal attacks over large amounts of memory is prohibitive, which
limits the applicability of TEEs. For example, Intel dropped
the integrity protection in favor of a large secure memory in
its latest SGX hardware [6].

In this research statement, we explore how one can combine
different TEE technologies that offer complementary protec-
tion. This approach poses different challenges: data partition-
ing granularity, integrity scheme, communication between the
two TEEs, and attestation.

We detail a proof-of-concept based on Intel SGX hardware
that combines a Scalable SGX-capable processor [6] (for its
large secure memory area) with the PCIe Intel VCA2 card [3]
which embeds three Client SGX processors (each providing
integrity guarantees).

SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland
2022.

TEE Arch. Conf. Int. Secure
mem. size

Client SGX Intel
√ √

256 MB
Scalable SGX Intel

√
X 512 GB

SEV-SNP AMD
√

X All mem.
TrustZone ARM

√
X All mem.

Keystone RISC-V
√

on-chip All mem.
PENGLAI RISC-V

√
FPGA 512 GB (∗)

Table 1: Comparison of various TEE implementations in
terms of Architecture, protection against hardware attacks
targeting Confidentiality or Integrity, and Secure memory
size. (∗)PENGLAI has been evaluated with only up to 600 MB of
secure memory.

2 TEES AND PROBLEM STATEMENT
2.1 Trusted Execution Environments
Trusted Execution Environments (TEEs) are secure areas of a
processor that provide integrity and confidentiality guarantees
on the code and data placed inside even in the presence of a
powerful attacker who has privileged access to the software
stack (including the OS) and/or the hardware (excluding the
processor package).

Over the past years, different TEE implementations has
been proposed, both from industry: Intel SGX [5, 6], AMD
SEV-SNP [16], ARM TrustZone [12]; as well as from academia:
Keystone [9] or PENGLAI [4].

While each implementation has its specificities, they all
provide a secure execution mode commonly called an enclave.
The enclave can access a specific memory area whose size
depends on the TEE implementation, from hundreds of MBs
up to the entire system memory. To provide confidentiality,
the hardware either transparently encrypts memory when it
leaves the CPU die, or carefully manages memory accesses. To
provide integrity guarantees, TEEs maintain an integrity tree.

TEEs provide an attestation mechanism to prove to a third-
party the authenticity of the secure component and the hard-
ware on which it runs [7, 9, 16]. Attestation can be either local,
to attest several instances of the same TEE between each oth-
ers, or remote, to give remote clients the guarantee that they
are communicating with a secure service.

2.2 Problem Statement
As detailed in Tab. 1, the existing TEEs exhibit different secu-
rity guarantees and secure memory size. Among the commer-
cially available TEEs, Client SGX is the only one that provides
integrity guarantees against a physical attacker, but at the cost
of a small secure memory: at most 256 MB shared between all



SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland P.-L. Aublin et al.

the enclaves of the system. Intel Scalable SGX, AMD SEV-SNP
and ARM TrustZone trade protection against physical attacks
for a larger secure memory area. Among research-oriented
TEEs, Keystone defers integrity protection to a special hard-
ware chip that has not been implemented yet; while PENGLAI
protects a larger memory (up to 512 GB in theory), but requires
CPU changes and has been implemented and evaluated on an
FPGA with only 600 MB of secure memory.

Without protection against hardware attacks, an attacker
can easily mount a replay attack [18], replacing memory con-
tent (data and/or code) with a previous version, without being
detected. As an example, an attacker could revert a security
hot-patch to bring back a vulnerability that will allow him to
extract enclave secrets [21].

Providing integrity guarantees on a large secure memory is
difficult: the size of the integrity tree grows linearly with the
amount of memory to protect. Given that it needs to be stored
in a memory area protected from physical attacks, increasing
its size is prohibitive. While several systems have tried to
optimize the integrity tree [4, 18], its poor scalability remains
a fundamental problem.

3 PROPOSED APPROACH
In this research statement, we are exploring an alternative
approach to providing both integrity guarantees against a
physical attacker as well as a large secure memory. The basic
idea of our approach is to combine two different TEE hardware:
one with a small secure memory but integrity protection —
we call it Integrity-Protected TEE, or IP-TEE for short) — and
another one with a large secure memory but lacking integrity
protection — called Large-Memory TEE, or LM-TEE for short.

Several challenges need to be addressed:
Application partitioning. Code and data can be partitioned
at different granularities, each offering different trade-offs: IP-
TEE could execute integrity checks over LM-TEE at a page or
memory object granularity, or directly store data in its secure
memory; IP-TEE could execute only integrity checking logic,
or could also execute part of the application logic; etc.
Integrity check scheme. Integrity can be checked either (i)
every time a particular data is read, which leads to more CPU
usage but immediate violation detection; or periodically, which
is less CPU intensive but detects violations later after they
happen. This changes the scope of the scheme from immediate
attack prevention to post-compromise attack detection, which
is for example the approach chosen by the LibSEAL [1] system.
Communication between the two TEEs. The communica-
tion between IP-TEE and LM-TEE needs to be secure. However,
to the best of our knowledge, TEEs do not provide a mecha-
nism to establish secure communication channel with another
TEE (secure communication channels between applications
running on the same TEE is possible, e.g., on AMD SEV-SNP).
We thus need to send encrypted messages over untrusted
shared memory, which incurs a substantial performance cost.
Attestation. Both IP-TEE and LM-TEE need to be attested
to the application users as well as between each others, to
guarantee the security of the application. However, each TEE
implements its own attestation mechanism. Thus, we need to
provide a generic attestation mechanism valid across multiple

TEE implementations. While there exist frameworks for re-
mote attestation across multiple TEEs [11], to the best of our
knowledge this is not the case for attestation across different
TEEs running on the same physical host.

Not all applications can benefit from our approach. We
target applications that: (i) need integrity protection of part of
the code and/or data against hardware attacks; (ii) use several
GBs of memory; and (iii) do not require integrity-protection
for all computations. This includes key-value stores [2, 8, 10],
databases [13, 17, 20], or data analytics systems [14, 15].

In this project, we will first address the problem of query
result freshness in a large secure database [22]. Databases
store a vast amount of data beyond what is available in IP-TEE.
They also require integrity protection to prevent an attacker
from dropping content by reverting the datastore to a previous
version. This can happen if the attacker wants to save memory
space or computation. Under our approach, IP-TEE inspects
clients queries and maintains a replies log to ensure that LM-
TEE, which executes the queries, does not send an out-of-date
reply computed over old content. As an optimization, IP-TEE
can also cache the most frequent query replies. The cache and
log sizes need to be carefully controlled to avoid running out
of secure memory.

4 PROOF-OF-CONCEPT
Our idea can be implemented in different ways, e.g., on an
FPGA, a RISC-V board, or trying to bend commercial TEEs
to our needs. Due to hardware availability, we propose to
implement our system on the commercially available Intel
SGX and AMD SEV-SNP TEEs: IP-TEE is implemented as
Client SGX and LM-TEE is implemented as Scalable SGX or
AMD SEV-SNP. To bring these two TEEs in the same physical
machine, we propose to use an Intel VCA2 PCIe card and install
it on a machine running a Scalable SGX or AMD SEV-SNP
capable processor. The VCA2 card, also called SGX card [3],
embeds three Client SGX-capable processors, each having its
own RAM and 128MB of secure memory.

If each request coming from the network triggers rounds of
communication between Client and Scalable SGX for integrity
checks, the PCIe bus might become a bottleneck. To alleviate
this problem we could make use of a smartNIC as shown
by Lynx [19] the smartNIC would directly send the network
requests to the VCA2 card, bypassing the host.

5 CONCLUSION AND FUTUREWORK
We have presented a new approach to protect large secure
memory against hardware attacks aimed at jeopardizing the
system integrity: combining two different TEE implementa-
tions, each having their own complementary characteristics.
We are currently working on the implementation of our proof
of concept.

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their helpful com-
ments. This work was supported by JSPS KAKENHI Grant
Number JP21K17726.



Towards TEEs with Large Secure Memory and Integrity Protection Against HW Attacks SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland

REFERENCES
[1] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran,

Christian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers,
and Peter Pietzuch. 2018. LibSEAL: Revealing Service Integrity Violations
Using Trusted Execution. ACM European Conference on Computer Systems
(EuroSys).

[2] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio
Honda, and Kapil Vaswani. 2019. SPEICHER: Securing lsm-based key-
value stores using shielded execution. In 17th USENIX Conference on File
and Storage Technologies (FAST 19). 173–190.

[3] Somnath Chakrabarti, Matthew Hoekstra, Dmitrii Kuvaiskii, and Mona Vij.
2019. Scaling Intel® Software Guard Extensions Applications with Intel®
SGX Card. In Proceedings of the 8th International Workshop on Hardware
and Architectural Support for Security and Privacy. 1–9.

[4] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia,
Binyu Zang, and Haibo Chen. 2021. Scalable Memory Protection in the
PENGLAI Enclave. In 15th USENIX Symposium on Operating Systems Design
and Implementation (𝑂𝑆𝐷𝐼 21). 275–294.

[5] Intel. 2014. Software Guard Extensions Programming Reference, Ref.
329298-002US. https://software.intel.com/sites/default/files/managed/48/
88/329298-002.pdf.

[6] Intel. 2021. Supporting Intel SGX on Muli-Socket Platforms. https:
//www.intel.com/content/dam/www/public/us/en/documents/white-
papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf.

[7] Simon P Johnson, Vincent R Scarlata, Carlos V Rozas, Ernie Brickell, and
Frank McKeen. 2016. Intel SGX: EPID provisioning and attestation services.
Intel (2016).

[8] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk
Huh. 2019. Shieldstore: Shielded in-memory key-value storage with sgx.
In Proceedings of the Fourteenth EuroSys Conference 2019. 1–15.

[9] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An open framework for architecting trusted execu-
tion environments. In Proceedings of the Fifteenth European Conference on
Computer Systems. 1–16.

[10] Ines Messadi, Shivananda Neumann, Nico Weichbrodt, Lennart Almst-
edt, Mohammad Mahhouk, and Rüdiger Kapitza. 2021. Precursor: a fast,
client-centric and trusted key-value store using RDMA and Intel SGX. In
Proceedings of the 22nd International Middleware Conference. 1–13.

[11] OpenEnclave Community. 2019. OpenEnclave SDK. https://openenclave.
io/sdk/.

[12] Sandro Pinto and Nuno Santos. 2019. Demystifying arm trustzone: A
comprehensive survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1–
36.

[13] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB:
A secure database using SGX. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 264–278.

[14] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trust-
worthy data analytics in the cloud using SGX. In 2015 IEEE Symposium on
Security and Privacy. IEEE, 38–54.

[15] Carlos Segarra, Ricard Delgado-Gonzalo, Mathieu Lemay, Pierre-Louis
Aublin, Peter Pietzuch, and Valerio Schiavoni. 2019. Using trusted ex-
ecution environments for secure stream processing of medical data. In
IFIP International Conference on Distributed Applications and Interoperable
Systems. Springer, 91–107.

[16] AMD SEV-SNP. 2020. Strengthening VM isolation with integrity protection
and more. White Paper, January (2020).

[17] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building
enclave-native storage engines for practical encrypted databases. Proceed-
ings of the VLDB Endowment 14, 6 (2021), 1019–1032.

[18] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018. VAULT:
Reducing paging overheads in SGX with efficient integrity verification
structures. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems.
665–678.

[19] Maroun Tork, LinaMaudlej, andMark Silberstein. 2020. Lynx: A SmartNIC-
driven Accelerator-centric Architecture for Network Servers. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 117–131.

[20] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.
StealthDB: a Scalable Encrypted Database with Full SQL Query Support.
Proc. Priv. Enhancing Technol. 2019, 3 (2019), 370–388.

[21] Nico Weichbrodt, Joshua Heinemann, Lennart Almstedt, Pierre-Louis
Aublin, and Rüdiger Kapitza. 2021. Experience Paper: sgx-dl: dynamic
loading and hot-patching for secure applications. In Proceedings of the 22nd
International Middleware Conference. 91–103.

[22] Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng. 2008. Providing
freshness guarantees for outsourced databases. In Proceedings of the 11th
international conference on Extending database technology: Advances in
database technology. 323–332.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://openenclave.io/sdk/
https://openenclave.io/sdk/

	Abstract
	1 Introduction
	2 TEEs and Problem Statement
	2.1 Trusted Execution Environments
	2.2 Problem Statement

	3 Proposed Approach
	4 Proof-of-Concept
	5 Conclusion and Future Work
	Acknowledgments
	References

