
Enclave-Accelerated Replay: Efficient Integrity for Server
Applications

Ahmed Awad

Brad Karp

University College London (UCL)

London, United Kingdom

ABSTRACT

The limitations of the twomain approaches to enforcing integrity of

execution on third-party servers, enclave-based execution (e.g., Intel

SGX) and log-and-replay (e.g., Orochi), constrain their applicability.

Early implementations of SGX enclaves provide strong integrity,

but are tightly limited in memory size (to 96 or 192 MB). The recent

Ice Lake SGX implementation supports larger enclaves, but only

by trading off a weaker integrity guarantee on memory. Log-and-

replay offers a strong integrity guarantee without constraining an

application’s memory size, but instead incurs the compute cost of

re-executing the verified application on an offline trusted server.

In this paper, we illustrate that each of these two approaches is

well suited to addressing the other’s shortcomings, and that one

need not sacrifice strength of memory integrity guarantee to ac-

commodate applications with large memory footprints, nor incur

the cost of re-executing an entire application offline. We propose

a hybrid enclave/log-and-replay design for checking the integrity

of application execution on an untrusted server. More broadly, we

identify TEEs’ potential as accelerators for offline verification, as

TEEs can obviate re-execution of parts of the application on the

offline trusted server.

ACM Reference Format:

Ahmed Awad and Brad Karp. 2022. Enclave-Accelerated Replay: Efficient

Integrity for Server Applications. In Proceedings of Proceedings of the 5th
Workshop on System Software for Trusted Execution (SysTEX ’22 Workshop).
ACM, New York, NY, USA, 6 pages.

1 INTRODUCTION

In the era of cloud computing, many deployers of server-side ap-

plications run code as tenants on data-center-hosted virtual or

physical servers whose hardware is owned and operated by a third

party. They choose to do so because a cloud provider’s economy

of scale typically allows pricing of resources allocated to tenants

(CPU, bandwidth, storage) more cheaply than a tenant could provi-

sion the equivalent dedicated resources. Tenancy incurs concern

over execution integrity, however: a deployer may worry whether

the whole stack of hardware and software (machine, hypervisor,

OS, application code) running in the cloud faithfully executes the
deployer’s application—i.e., whether her application will yield the

same results running in the cloud environment as it would when

run on a hardware/software stack controlled by the deployer.

Prior work on ensuring integrity of execution on an untrusted

server has fallen broadly into two categories, each with distinct

material limitations:

SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland
2022.

• enclave-based execution of application code, as most widely

deployed in Intel’s Software Guard eXtensions (SGX) [6]: SGX

guarantees integrity and confidentiality
1
for execution within

an enclave, an encrypted memory region containing code and

data that the CPU hardware isolates strongly from the rest of the

machine’s hardware and software (including from the OS and

hypervisor). Early implementations of SGX provided strong mem-

ory integrity, including protection against replay, but suffered

from severe constraints on the amount of memory within an en-

clave: the enclave page cache (EPC) was restricted to 192MB [11].

While Intel has recently introduced an SGX implementation that

allows much larger enclave memory regions, this design only

offers weaker integrity guarantees (by dropping protection from

replay attacks on memory hardware) [12, 14]. AMD’s SEV [1]

makes a similar trade-off of increased memory size for a weaker

integrity guarantee in its encryption of virtual machines’ mem-

ory. We discuss these integrity strength/memory size trade-offs

further in Section 2.3.

• log-and-replay of execution, exemplified by Orochi [18] and

Cobra [19]: A server logs the requests and responses that it re-

ceives and sends, along with untrusted “advice” describing sched-

uling. The deployer then periodically ships the log to a trusted

verifier box that holds a full copy of the deployed software stack.

The verifier re-executes the server’s computation from the log’s

contents to check that the application generates the same re-

sponses in the server’s log. The verifier accelerates re-execution

by batching requests from the log and executing them in SIMD-

like fashion [18]. Acceleration notwithstanding, the verifier still

incurs a significant CPU cost beyond the untrusted server’s cost.

There is also significant latency between execution of a request

on the server and checking of that request’s execution on the

verifier. While Tan et al. suggest copying the log from server to

verifier once a day [18], even if one streamed the log from server

to verifier, the verifier’s batching of requests for acceleration

increases the latency of integrity checking.

We observe that while the above two approaches suffer from

limitations individually, each is particularly well suited to remedy

the other’s: log-and-replay is free to use a machine’s entire physical

memory for applications with large in-core data sets, and executing

a portion of an application in a size-constrained enclave provides

strong integrity protection without the CPU cost of re-executing

that portion of the application on an offline verifier. This comple-

mentarity raises a tantalizing possibility: can one use enclave-based

execution as an “accelerator” for compute-intensive portions of

1
We deem confidentiality as out of scope in this work; we concern ourselves only with

integrity.



SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland Ahmed Awad and Brad Karp

an application’s execution, in that such portions need not be re-

executed on a verifier, yet use log-and-replay for integrity-protected

execution of the remainder of the application, with freedom to use

the machine’s entire memory (without the severe limits of EPC

size)? In this paper, we answer this question in the affirmative: we

sketch the design of Enclave-Accelerated Replay (ear), a hybrid

enclave/log-and-replay approach to application integrity protec-

tion on cloud servers. While we focus herein on SGX enclaves in

the interest of exploring a concrete design for a Trusted Execution

Environment (TEE) that is already widely deployed, we expect this

hybrid approach can extend to emerging TEEs for special-purpose

compute accelerators, such as for GPUs [9, 21].

Whether ear is viable rests largely on performance: can the

domain crossings and data motion between in-enclave and extra-

enclave code be made sufficiently efficient for ear to perform well?

We expect that for applications with a large total memory foot-

print, but that execute many memory-limited, compute-intensive

sub-tasks that fit in an enclave, ear should perform well. Such ap-

plications will reap the benefit of eliding re-execution of compute-

intensive sub-tasks on an offline verifier, yet should not incur too

much cost from domain crossings and data motion across enclave

boundaries. We demonstrate that humble locality-aware blocking

of data upon entry into an enclave can significantly outperform the

best known techniques for paging EPC memory to extra-enclave

memory (by up to 1.5-2x). We conclude that ear’s approach to

integrity assurance for cloud applications holds promise as a means

for escaping the memory limits of today’s enclaves that provide the

strongest integrity guarantee, while reducing the computational

costs of the verifier required in log-and-replay designs.

2 BACKGROUND & PROBLEM DEFINITION

After stating the threat model for integrity verification systems

for server applications, we articulate the goals for such systems,

and assess how well today’s two main design approaches for such

systems meet those goals.

2.1 Threat Model

We assume that an adversary can compromise the OS and hypervi-

sor running on the untrusted cloud provider’s hardware. We further

assume that she can compromise any hardware in the untrusted

machine but the CPU, and present arbitrary network input. We

trust the development environment, administrator-provided com-

putational resources, compiler toolchain, and Intel-provided SGX

infrastructure (i.e., SGX SDK, attestation infrastructure, and SGX

platform services). Like prior work on execution integrity, ours

leaves denial of service and hardware side channels out of scope.

SGX is rife with implementation vulnerabilities [10, 20, 22, 23]. We

target it as a concrete example of an enclave substrate, and ex-

pect future SGX implementations to improve, and our design to

generalize to other enclave platforms [7, 13].

2.2 Goals

The following are desiderata for a system that ensures execution

integrity of cloud-hosted server applications:

Soundness & Completeness. The system detects (or thwarts) all

attempts by an adversary to violate the application’s execution

Property SGX Auditing Hybrid

Soundness &

Completeness
✓ ✓ ✓

Multi-threaded ✓ ✓ ✓

Efficient At the cost of integrity ✓ ✓

Timely ✓ ✓

Persistence support ✓ ✓

Language agnostic ✓ ✓

Generality ++ + +++

Table 1: Properties of three approaches.

integrity (i.e., no false negatives), and does not detect violations if

the cloud server (executor) faithfully executed the program (i.e., no

false positives).

Multi-threaded. The system supports multi-threaded applica-

tions.

Efficient. The system imposes only a moderate performance cost.

Low Extra-cloud Resources. As much of the computational cost

of application execution and integrity checking as possible should

be borne by cloud-provided computational resources, as they are

cheaper than deployer-provisioned, dedicated resources.

Timely. The system supports timely integrity violation detec-

tion. If an executor is not faithful in its execution, then the system

should reveal it within a limited period. The tightest such limitation

would be to detect integrity violations before they become visible

to clients.

Integrity-protected Persistence. In line with many cloud applica-

tions’ needs, the system should offer mutable storage that supports

validation of data integrity.

Language-agnostic. While a good fit for some web applications,

interpreted languages introduce overhead that is a poor fit for

compute-intensive applications. To accommodate such applications,

the system must support unmanaged languages (e.g., C++, Rust,

&c.).

Generality. The system should offer the above properties for all

applications. Of course, the system may perform better for certain

classes of applications than others.

We next consider the extent to which Intel’s Software Guard

eXtensions (SGX),
2
a widely deployed enclave design, and log-and-

replay audit fit the above desiderata.

2.3 SGX and Its Constraints

Intel SGX is a set of architectural extensions to x86-64 CPUs that

lets applications execute procedures using enclave memory, an en-

crypted and integrity-protected region of memory allocated from a

pool known as the Enclave Page Cache (EPC). Intel’s SGX implemen-

tations to date have made two rather different trade-offs between

limitations on EPC size and strength of the integrity guarantee on

enclave memory. Earlier SGX implementations placed a Memory

Encryption Engine (MEE) in the CPU package, and used a tree-

based MAC/counter scheme to protect the integrity of an enclave’s

2
We focus on SGX, as most cloud providers offer Intel CPUs and offered SGX by 2021.



Enclave-Accelerated Replay: Efficient Integrity for Server Applications SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland

memory contents, where the tree’s root node is stored within the

MEE (i.e., on-chip). The use of counters, which increment on writes,

provides strong integrity protection, including against replay: even

an adversary that can read and write DRAM directly (without going

through the CPU) cannot replay prior valid memory contents, as

the adversary cannot modify the root node within the MEE.The

cost is complexity: this MEE-based approach stores all nodes but

the root of the tree in DRAM, and thus imposes significant DRAM

bandwidth requirements for tree reads and updates. As the EPC

grows, so does the depth of the tree and the DRAM bandwidth for

checking and updating the tree’s contents on every memory access.

Intel was compelled to limit the maximum application-accessible

EPC size to 192 MB in the most recent version of MEE-based SGX

hardware to bound tree depth (and the concomitant DRAMmemory

bandwidth).

Most recently, in the Ice Lake microarchitecure’s SGX imple-

mentation, Intel has changed tack significantly by eliminating the

MEE in favor of Total Memory Encryption (TME), which stores all

MAC-related state in DRAM, and does not use a tree-based MAC.

Because the TME-based implementation of SGX eschews checking

(for reads) and updating (for writes) multiple levels of a tree-based

MAC data structure, it escapes the MEE-based implementation’s

tight 192 MB EPC size constraint, and supports enclaves hundreds

of GB in size. However, this increase in enclave memory size limit

comes at the cost of weakened integrity protection on an enclave’s

contents: this new TME-based SGX implementation cannot protect

against replay attacks on DRAM contents by attackers who can

access DRAM directly (without going through the CPU) [12, 14].

This change is somewhat insidious, in that it represents a material

weakening of SGX’s original integrity guarantee, while Intel still

refers to the TEE design as SGX, and an enclave’s memory as the

EPC. Memory replay attacks may well be an unacceptable integrity

risk for application deployers who do not trust the owner and/or

operator of cloud-based server hardware. For those deployers, MEE-

based SGX’s stronger integrity guarantee will be a far better fit,

though it comes with a tight 192 MB EPC size limit. In this paper,

we concern ourselves with deployers and applications that demand

MEE-based SGX’s stronger integrity.

SGX prohibits enclave procedures from invoking system calls.

Instead, the untrusted portion of the application outside the en-

clave must “proxy” syscalls for enclave code. Switching between

untrusted and trusted execution requires a costly hardware con-

text switch. While enclave code may access untrusted memory,

for integrity guarantees to hold, it must execute integrity-critical

operations in enclave memory. Thus enclave procedures first copy

arguments into trusted memory before executing.

SGX allows applications to oversubscribe the EPC by paging

enclave memory to untrusted memory. An SGX kernel module ser-

vices page faults on EPC memory by using privileged instructions

to evict pages from the EPC to untrusted memory. The eviction

process is as follows: after selecting a page for eviction, SGX blocks

all enclave threads from accessing that page, and flushes all TLB en-

tries that reference that page. Finally, MEE-based SGX encrypts the

page using AES-GCM and writes it to untrusted memory. Context

switches, cryptographic operations, and inter-processor synchro-

nization make this process expensive.

While MEE-based SGX offers a strong integrity guarantee, its

EPC size limit constrains application size, and the syscall restriction

mandates at least an untrusted shim layer to invoke syscalls on

behalf of enclave code. To achieve performance and correctness,

developers who want MEE-based SGX’s strong integrity guarantee

must take on the onerous task of carefully partitioning their ap-

plications between enclave and non-enclave code, while ensuring

that applications do not blindly trust the results of system calls or

oversubscribe the EPC.

Some prior work [2, 4] resorts to pulling much of the OS into

the enclave to avoid partitioning the application. Given MEE-based

SGX’s constrained EPC, this approach doesn’t scale to applications

with a large memory footprint. Some systems [16, 17] attempt to

escape EPC size constraints on MEE-based SGX implementations

by improving the performance of EPC paging with a trusted, in-

enclave paging mechanism. These approaches still incur significant

costs, however (see §4).

Finally, many server applications need mutable persistent stor-

age. SGX’s sealing primitive does not provide temporal integrity,
and thus leaves mutable storage susceptible to rollback attacks.

2.4 Auditing and Its Costs

Auditing an application’s execution integrity, by contrast, does

not require partitioning the application, nor does it limit the ap-

plication’s memory footprint. Auditing assumes that the applica-

tion is untrusted; it executes outside of any TEE. The deployer

instead instruments the application to gather untrusted informa-

tion about the application’s control flow, thread scheduling, and

other non-deterministic events, and store it in advice files. The

server application communicates with clients via an in-enclave TLS

stack. Terminating TLS in the enclave allows an in-enclave trusted
observer to faithfully record clients’ requests and responses in a

trace [3]. The trace is an immutable, append-only log; the trusted
observer stores the full trace on a cheap untrusted disk, and records

a compact count of trace entries and their hashes in a trusted store.
A trusted verifier verifies that the executor faithfully executed

the application by:

(1) fetching the contents of the trusted store, advice files, and trace,

(2) validating the trace’s contents by computing the hash of each

entry and comparing the computed hashes against the hashes the

verifier fetched from the trusted store,

(3) re-executing the application on the requests in the trace, and

finally,

(4) comparing the re-execution’s output against the responses in the

trace. If they match, the verifier deems the execution faithful.

The verifier takes advantage of request batching and the untrusted

application’s advice to eliminate operations during re-execution,

achieving better performance than naively re-executing the appli-

cation on client requests (5-10x times faster for PHP-based web

applications [18]). However, this approach’s performance is depen-

dent on commonality in client request executions. Moreover, the

verifier achieves acceleration only when it executes a batch of re-

quests per unit of control flow, and batching makes detection of

integrity violations less timely.

State-of-the-art auditing implementations [18] are not language

agnostic, and target data-flow-like request-response processing



SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland Ahmed Awad and Brad Karp

patterns. We observe that many RPC-like servers exhibit a sim-

ilar processing pattern, so this approach may be widely applica-

ble. However, at this writing, the only auditing system that sup-

ports concurrent server applications, Orochi [18], targets only PHP
applications. Implementing auditing for an unmanaged language

presents challenges unaddressed in prior work: an interpreter pro-

vides convenient interposition on an application’s execution at the

granularity of interpreter operations, which simplifies the imple-

mentations both of gathering advice and the verifier’s SIMD-like

acceleration technique. An unmanaged language, by contrast, offers

no such interposition point. While tools such as Valgrind and Pin

allow dynamic instrumentation of code in unmanaged languages,

their performance overhead is unattractive, particularly given that

developers choose unmanaged languages for performance reasons.

3 DESIGN

MEE-based SGX cannot accommodate applications with large data

sets and does not offer temporal integrity for persistent storage.

Log-and-replay audit incurs significant cost for re-execution on a

trusted verifier box (even after batching-based acceleration), trades

improved re-execution throughput for reduced timeliness of detec-

tion of integrity violations (because of batched trace processing),

and has to date only been achieved for interpreted PHP.

We now sketch Enclave-Accelerated Replay (ear), a design that

remedies these lacunae. The central insight underlying ear is that

there is synergy between SGX and replay audit, which we believe

is readily observable, though we do not believe this observation

appears in the literature, or has served as the basis for a design to

date. To aid exposition, we consider throughout the simple running

example of an RPC-based image processing server application.

3.1 A Synergistic Hybrid

Table 1 summarizes the design goals that SGX and auditing satisfy.

It is readily apparent that each goal unsatisfied by one is satisfied by

the other. Could a hybrid of the two approaches inherit auditing’s

support for applications that use the untrusted server’s full physical

memory, and support for temporal integrity for persistent storage?

And could it also leverage SGX to reduce the extra-cloud compute

cost imposed by auditing’s offline verifier? Such a hybrid design

would entail running parts of an application in an SGX enclave and

parts outside the enclave. How can we compose the integrity guar-

antees in each of these domains to achieve integrity for the whole

application? And finally, are the overheads of crossing between

those domains, both in execution and data motion, tolerable?

To reduce the execution cost of auditing’s offline verifier, we

must reduce the number of instructions that it must re-execute.

Applying a filter to an image, for example, is a compute-intensive

task that an image processing application might execute often. If

the verifier did not have to re-execute this task for any request-

response pair, it would re-execute faster. Doing so might render

batches of fewer requests (or even single requests) efficient. What

is needed is some means to trust just the execution of the filter,

despite its running on the untrusted cloud server. One could then

simply log the filter function’s result on the untrusted server, and

have the verifier use this “cached” result, rather than re-execute

the filter function.

SGX conveniently does just this: it executes instructions with

integrity on an untrusted machine. ear executes image filtering as

an enclave procedure, and records the inputs and output
3
to/from

that procedure in a procedure record (PR). At audit time ear’s verifier

uses results from PRs instead of re-executing the corresponding

compute-intensive procedures. To do so, ear’s verifier first loads

the inputs and output from the PR, then compares the inputs in the

re-execution with the inputs in the PR. If they match, ear’s verifier

continues executing with the “memoized” output from the record.

ear in essence treats SGX as a compute accelerator for the ver-
ifier to improve its efficiency. Doing so reduces the extra-cloud

resources consumed by auditing, instead shifting compute to the

cloud provider, while maintaining integrity. There is a a further

potential performance benefit. Recall that Orochi’s verifier’s per-

formance relies on request batching, which increases the latency of

verification. Eliding a function’s re-execution on ear’s verifier sig-

nificantly speeds the verifier even for a single request. So ear should
also offer more timely auditing.

PRs fit straightforwardly into an ear untrusted cloud server’s

request-response log. Just as with requests and responses, ear’s

trusted observer also persists PRs to the untrusted disk, and sends

hashes to the trusted store.
4

3.2 Architecture Overview

Figure 1: A high-level view of ear’s architecture. Solid arrows

denote authenticated, integrity-protected communication;

dashed arrows are procedure invocations.

Figure 1 depicts ear’s top-level components:

• the trusted observer, running inside the enclave, which records

all inputs/outputs to/from enclave procedures, including client

requests and responses,

3
As stated in §2.3 any integrity-critical enclave procedure must copy inputs into the

enclave and outputs out of the enclave.

4
Note that the mechanism used during audit for checking the integrity of interactions

between the application and the file system requires re-executing all instructions that

led to a particular file modification. Therefore, ear’s verifier re-executes the operation

that produced the file output.Why not just use a trusted store for the application’s

files? Parts of the application under audit are not trusted. For correctness, the verifier

must re-execute the untrusted portions of the application regardless of whether the

input came from a trusted store.



Enclave-Accelerated Replay: Efficient Integrity for Server Applications SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland

• a trusted store that holds hashes sent by the trusted observer,

• the untrusted component, which performs I/O on behalf of the

trusted component and executes part of the request,

• an untrusted runtime that captures a tag representing the control

flow a request experienced during its execution by the untrusted

application. The runtime stores {request, tag} pairs in untrusted

advice files on the untrusted server’s disk.

Clients send requests to the server application over TLS-protected

channels (1). The untrusted component forwards a request to the

trusted observer for recording and decryption (2). The trusted ob-

server records the request by storing a hash (3 & 4) of the request

in the trusted store, then appending the request to the trace file

(5). After updating its records, the trusted observer returns the

plaintext request to the untrusted component. The untrusted com-

ponent executes a request in a user-level thread (fiber). We adopt

this concurrency model because the correctness proofs for Orochi’s

verifier (on which ear’s is based) assume a single thread of control

executes a single request.

ear’s execution of the untrusted component of the application

builds on Orochi’s tracing: as the untrusted component of the ap-

plication executes a request, ear’s runtime records control flow

information and the output of non-deterministic functions in advice
files. When ear encounters an enclave procedure call in the un-

trusted component, it forwards the call to the trusted observer (6).

The trusted observer executes the procedure and records the pro-

cedure’s inputs and output in just the same way a client’s request

is recorded. After recording the enclave procedure’s inputs and

output, the trusted observer forwards the output to the untrusted

component (7).

Once the untrusted component finalizes a response to a client, it

passes the response to the trusted observer. The trusted observer

records the response, encrypts it, then returns the encrypted output

to the untrusted component (8). The untrusted component can now

return the response to the client (9).

This order of operations is vital for temporal integrity: the trusted

observer stores hashes in the trusted store before releasing the in-
put/output to the untrusted machine. If an adversary erases entries

from the untrusted disk, checking the trusted store’s records will

immediately reveal the truncation because the number of records

in the trusted store will be greater than the number of entries on

the untrusted disk.

Unlike Orochi, which targets interpreted PHP, ear targets com-

piled C++ applications. ear includes LLVM passes that statically

instrument application code to collect control flow information. In

the interest of efficiency, ear captures control flow at basic-block

granularity.

Our working ear prototype compiles C++ application source

into two executables: a logging binary that runs on the untrusted

server, and a verifier binary that runs on a trusted machine. Imple-

mentation of the server and verifier sides of enclave acceleration is

in progress; we already have a working trusted observer, building

upon a previously published design [3].

4 PERFORMANCE

While our prototype does not yet let us evaluate the performance

improvement ear’s verifier enjoys from SGX-obviated re-execution,

there is an even more pressing, basic performance question about

ear’s viability. ear targets applications whose memory footprints

cannot fit withinMEE-based SGX’s EPC, and executes only portions

of those applications in enclaves. For ear to be viable, it must

compare favorably in application performance on the untrusted

cloud server with the best known techniques for in-enclave SGX

execution of entire applications that cannot fit in the EPC. To that

end, we measure the relative performance of the sorts of control and

data transfers earmust make between extra-enclave and in-enclave

code vs. the overheads of vanilla SGX paging and state-of-the-art

in-enclave paging (IEP) techniques, as offered by Eleos and CosMIX.

For workloads with good reference locality but data sets that

exceed the EPC’s size, we expect an application using ear or IEP to

outperform one that relies on vanilla SGX paging, as the former two

approaches avoid context switching to bring data into the enclave.

They will also scale better than SGX paging in increasing thread

count, because they avoid inter-processor synchronization, which

may serialize threads in the presence of page faults. However, all

three schemes must copy the data set from untrusted to trusted

memory at least once. In the presence of good reference locality it

is possible that both IEP and ear will copy data into the enclave

the same number of times, yielding similar performance.

For workloads with poor locality, we expect ear to outperform

both SGX paging and IEP. ear relies on the programmer to explicitly

indicate upon enclave procedure invocation which exact data to

copy into the enclave. Paging, by contrast, is oblivious to the word-

level access pattern of the application, and may thus evict pages

that will be used soon thereafter.

1 2 3 
Number of Threads

0

2000

4000

6000

8000

10000

Ti
m

e 
Ta

ke
n 

(m
s)

Hash Table; Random Read

1 2 3 
Number of Threads

0

500

1000

1500

2000

2D matrix; Sequential Read

Approach
EAR
SGX
IEP

Figure 2: Time to complete a summation for values in a hash

table and 2D matrix vs. number of threads for a data set that

occupies 512MB (~5x EPC size). SGX’s paging performance

does not scale in thread count for large data sets as page fault

synchronization serializes threads.

To evaluate our approach’s overhead for an access pattern with

good locality, we measure the time taken to compute the sum of

a single 2D-array. The vanilla-SGX application copies the matrix

into the enclave and then computes the sum in a single enclave

call. The ear-based application performs a row-wise copy into the

enclave and summation, then computes the total sum from the

vector of partial sums.

We perform the same computation on random elements of a

hash table that maps 8 byte keys to 8 byte integer values to evaluate

overheads for applications with access patterns that do not have

good locality and with expensive to copy data structures. Note that

we precompute the keys.



SysTEX ’22 Workshop, @ASPLOS, Lausanne, Switzerland Ahmed Awad and Brad Karp

All experiments ran on a 6-core, SGXv1 Intel i7 8700 CPU at 3.20

GHz with 16GB of DDR4 RAM. We pinned threads to cores. To

reduce SGX’s context switching overhead, enclave threads do not

invoke EEXIT; instead, they poll a lock-free queue. Untrusted code

enqueues requests there to request service from the enclave.

The synthetic benchmark results
5
in Figure 2 confirm our hy-

potheses. For 32 MB data sets that fit inside the enclave (results

elided for brevity), keeping the data set in untrusted memory and

copying it into trusted memory before enclave execution introduces

memory copy overhead.
6
Once the data set’s size exceeds the EPC’s

size, ear outperforms SGX and IEP because ear leverages program-

mer knowledge about access patterns to avoid needless copying

within full pages. Note that IEP and ear perform similarly in the

sequential access case as each copies the entire data set into the

enclave once. In the random access case, ear outperforms IEP by

~2X and SGX paging by ~10X.

5 DISCUSSION

While Ice Lake’s TME-based SGX implementation offers the prospect

of enclaves that are hundreds of GB in size, it only does so by weak-

ening the integrity guarantee on enclave memory. Deployers who

want integrity protection that includes replays will find the MEE-

based SGX implementation a better fit. While several have proposed

placing entire applications within an SGX enclave [2, 4, 5], MEE-

based SGX implementations’ constrained 192 MB EPC [11] cannot

accommodate the many applications whose memory needs exceed

that limit. And as we have illustrated experimentally, even the best

known techniques for paging the EPC to non-enclave memory per-

form relatively poorly. We posit that enclaves are particularly well

suited to serve as accelerators of log-and-replay integrity check-

ing for an application’s execution, by obviating re-execution of

compute-intensive, memory-bounded portions of an application’s

execution. And we believe ear’s synergistic combination of enclave

execution with log-and-replay audit holds promise for efficient

integrity verification of native-code-compiled server applications

with a large memory footprint.

To learnmore about ear’s sphere of applicability, we intend to ap-

ply ear to applications whose characteristics we expect to be a good

fit. MapReduce applications [8] may fit ear as theymanipulate large

data sets typically comprised of small objects amenable to process-

ing in parallel. Tree-based key-value stores, such as Masstree [15],

also process large data sets whose constitutent data units are small,

and frequently perform computations on limited key ranges. Deep

learning workloads often exhibit skewed access to a subset of data

items, and thus may be a good fit for the ear approach, particularly

if the untrusted server’s GPU or TPU provides TEE functionality,

so that ear can save the offline verifier re-execution of hardware-

accelerated operations on the untrusted server.

We close by observing that if MEE-based and TME-based imple-

mentations of SGX coexisted within a single machine, they would

5
We model IEP’s overhead by multiplying the number of pages SGX brings in by

the time to copy one page into the enclave (without synchronization overheads). We

resorted to this crude yet generous model because CoSMIX does not build in a 2021

SGX development environment.

6
For data sets that fit inside the enclave, developers should place all data within the

enclave (as SGX paging and IEP do).

complement each other well: the former could provide strong in-

tegrity and confidentiality for a “core” EPC of limited size, while

the latter could provide confidentiality for a further “outer” very

large enclave memory region. An application running under ear on

such a machine could enjoy secrecy and strong (replay-resistant)

integrity guarantees over its entire memory footprint. TME would

provide confidentiality for the application state in the outer enclave

memory region, MEE would provide confidentiality and strong

integrity for the application state in the core EPC region, and

ear would provide strong integrity for the application state in

the outer enclave memory region and handle domain and data

crossings between the core and outer regions.

REFERENCES

[1] AMD Corporation. Amd sev-snp: Strengthening vm isolation with integrity

protection and more. https://www.amd.com/system/files/TechDocs/SEV-SNP-

strengthening-vm-isolation-with-integrity-protection-and-more.pdf, 2020.

[2] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,

D. Muthukumaran, Daniel, M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,

P. Pietzuch, and C. Fetzer. SCONE: Secure Linux Containers with Intel SGX. In

OSDI 2016.
[3] A. Awad and B. Karp. Execution integrity without implicit trust of system

software. In SysTEX 2019.
[4] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted

cloud with Haven. In OSDI 2014.
[5] C. che Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library OS for

unmodified applications on SGX. In USENIX ATC 2017.
[6] V. Costan and S. Devadas. Intel SGX explained. IACR Cryptology ePrint Archive,

2016, 2016.

[7] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware extensions

for strong software isolation. In USENIX Security 2016.
[8] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, Jan. 2008.

[9] T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J. Rossbach, and E.Witchel. Telekine:

Secure computing with cloud GPUs. In NSDI 2020.
[10] Intel Corporation. Software guidance for security advisories. https://software.

intel.com/security-software-guidance/software-guidance, 2019.

[11] Intel Corporation. 10th Generation Intel® Core Processor™ Families, 2020.
[12] Intel Corporation. Supporting Intel SGX on Multi-Socket Platforms, 2021.
[13] D. Lee, D. Kohlbrenner, K. Cheang, C. Rasmussen, K. Laeufer, I. Fang, A. Khosla,

C.-C. Tsai, S. Seshia, D. Song, and K. Asanovic. Keystone enclave: An open-source

secure enclave for RISC-V. https://keystone-enclave.org/files/keystone-risc-v-

summit.pdf, 2018.

[14] Linux Kernel. Software guard extensions (sgx). https://www.kernel.org/doc/

html/latest/x86/sgx.html#encryption-engines, 2022.

[15] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-value

storage. In EuroSys 2012.
[16] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein. Eleos: Exitless os services

for sgx enclaves. In EuroSys 2017.
[17] M. Orenbach, Y. Michalevsky, C. Fetzer, and M. Silberstein. CoSMIX: A compiler-

based system for secure memory instrumentation and execution in enclaves. In

USENIX ATC 2019.
[18] C. Tan, L. Yu, J. B. Leners, and M. Walfish. The efficient server audit problem,

deduplicated re-execution, and the web. In SOSP 2017.
[19] C. Tan, C. Zhao, S. Mu, and M. Walfish. Cobra: Making transactional key-value

stores verifiably serializable. In OSDI 2020.
[20] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Sil-

berstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the

keys to the Intel SGX kingdom with transient out-of-order execution. In USENIX
Security 2018.

[21] S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted execution environments

on GPUs. In OSDI 2018.
[22] W.Wang, G. Chen, X. Pan, Y. Zhang, X.Wang, V. Bindschaedler, H. Tang, and C. A.

Gunter. Leaky cauldron on the dark land: Understanding memory side-channel

hazards in SGX. In CCS 2017.
[23] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Sil-

berstein, R. Strackx, T. F. Wenisch, and Y. Yarom. Foreshadow-ng: Breaking

the virtual memory abstraction with transient out-of-order execution. https:

//foreshadowattack.eu/foreshadow-NG.pdf, 2018.

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://software.intel.com/security-software-guidance/software-guidance
https://software.intel.com/security-software-guidance/software-guidance
https://keystone-enclave.org/files/keystone-risc-v-summit.pdf
https://keystone-enclave.org/files/keystone-risc-v-summit.pdf
https://www.kernel.org/doc/html/latest/x86/sgx.html#encryption-engines
https://www.kernel.org/doc/html/latest/x86/sgx.html#encryption-engines
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf

	Abstract
	1 Introduction
	2 Background & Problem Definition
	2.1 Threat Model
	2.2 Goals
	2.3 SGX and Its Constraints
	2.4 Auditing and Its Costs

	3 Design
	3.1 A Synergistic Hybrid
	3.2 Architecture Overview

	4 Performance
	5 Discussion
	References

